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The Ott-Antonsen (OA) ansatz [Ott and Antonsen, Chaos 18, 037113 (2008); Chaos 19, 023117

(2009)] has been widely used to describe large systems of coupled phase oscillators. If the coupling

is sinusoidal and if the phase dynamics does not depend on the specific oscillator, then the macro-

scopic behavior of the systems can be fully described by a low-dimensional dynamics. Does the

corresponding manifold remain attractive when introducing an intrinsic dependence between an

oscillator’s phase and its dynamics by additional, oscillator specific parameters? To answer this,

we extended the OA ansatz and proved that parameter-dependent oscillatory systems converge to

the OA manifold given certain conditions. Our proof confirms recent numerical findings that

already hinted at this convergence. Furthermore, we offer a thorough mathematical underpinning

for networks of so-called theta neurons, where the OA ansatz has just been applied. In a final step,

we extend our proof by allowing for time-dependent and multi-dimensional parameters as well as

for network topologies other than global coupling. This renders the OA ansatz an excellent starting

point for the analysis of a broad class of realistic settings. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4963371]

Coupled phase oscillators are being widely used to

describe synchronization phenomena. The study of their

collective dynamics has experienced a major break-

through by the results by Ott and Antonsen.
1–3

The

asymptotic behavior of the mean field of infinitely many

coupled oscillators can be cast into a reduced, low-

dimensional system of ordinary differential equations.

The evolution is hence captured by the so-called Ott-

Antonsen (OA) manifold.

Very recently, the OA ansatz has been applied to net-

works of theta neurons, see, e.g., Refs. 4–10. A particular

property of coupled, inhomogeneous theta neurons is that

both the phase of a single neuron and its dynamics

depend on a parameter, which establishes an intrinsic

relation between them. While numerical results suggest

the attractiveness of the OA manifold in the presence of

such a parameter dependence, it has as to yet not been

proven whether the dynamics really converges to it. For

a certain class of parameter dependencies, we here

extend the existing theory of the OA ansatz and show

that the OA manifold continues to asymptotically attract

the mean field dynamics.

Parameter-dependent systems and their description

through the OA ansatz have been considered by, e.g.,

Strogatz and co-workers,
11

Wagemaker and co-workers,
12

and So and Barreto.13 There, parameters seemingly did

not yield a correlation between an oscillator’s phase and

its dynamics. A rigorous proof, however, that the OA

ansatz can be applied here, is still missing. We explicitly

address this last point. In particular, we prove a conjec-

ture later formulated by Montbri�o and co-workers7 on the

attractiveness of the OA manifold for parameter-

dependent systems. The case of parameters serving as

mere auxiliary variables readily follows from our result—

we will refer to this as “weak” parameter-dependence.
14

By showing that a network of theta neurons can be treated

as a parameter-dependent oscillatory system, our result

establishes an immediate link to networks of quadratic

integrate-and-fire (QIF) neurons: That is, the so-called

Lorentzian ansatz as an equivalent approach to the OA

ansatz is analytically substantiated. By this, we may exert

an important impact in mathematical neuroscience.

Finally, we extend the parameter dependence for

more general classes of networks. First, we address non-

autonomous systems and show that our proof can be

applied to time-varying parameters. An important exam-

ple here is a biologically realistic approach to oscillatory

systems proposed by Winfree.
15

Second, we include mul-

tiple distributed parameters illustrated by coupled limit-

cycle oscillators with shear. Third, we apply our proof to

networks with different coupling topologies including

non-local coupling by using a heterogeneous mean field

approach.

I. INTRODUCTION

The Kuramoto model can be considered the most semi-

nal description of globally coupled networks of phase oscil-

lators. It has been investigated in great detail but its various

extensions still make it the model-to-work-with when it
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comes to the study of network dynamics.16,17 We adopt the

notion of Montbri�o, Paz�o, and Roxin7 and write the

Kuramoto-like model as

hj

:

¼ xj þ Im½He�ihj �; (1)

where the phase dynamics of the j-th oscillator (j ¼ 1;…;N)

depends on its natural frequency xj and a driving complex-

valued field H. The latter can depend on time t, on the mean

field zðtÞ ¼
PN

j¼1 eihjðtÞ, and on other auxiliary variables but

not on the (index of) oscillator j, i.e., H … remains identical

for all oscillators j ¼ 1;…;N. Given the right-hand side of

(1), the oscillators are sinusoidally coupled.

In the thermodynamic limit (N !1), the OA ansatz

yields solutions for the dynamical evolution of the corre-

sponding distribution function (of all the oscillators), which

are attracted towards a reduced manifold of states.1,2 Central

to this is the description of the system via its distribution

density qðh;x; tÞ. The quantity qðh;x; tÞ dh dx is the frac-

tion of oscillators whose phases are in the range ½h; hþ dh�
and have natural frequencies in ½x;xþ dx� at time t. The

distribution function q obeys the continuity equation

@tqþ @hðq�Þ ¼ 0; (2)

with velocity field

�ðh; tÞ ¼ xþ Im½HðtÞe�ih�: (3a)

The latter can equivalently be written as11,12

�ðh; tÞ ¼ f eih þ hþ f �e�ih: (3b)

In agreement with the assumptions on H, we require that the

functions f and h may explicitly depend on time t, on the (now

continuum form of the) mean field zðtÞ ¼
Ð1
�1
Ð 2p

0
qeihdhdx,

and on other auxiliary variables but not on the phase h itself.

Asymptotic attractiveness of the OA manifold, given by

distribution functions of the form

q h;x; tð Þ ¼ g xð Þ
2p

1þ
X1
n¼1

a x; tð Þneinh þ c:c:

" #( )
; (4)

that satisfy the normalization conditionð1
�1

ð2p

0

qðh;x; tÞ dh dx ¼ 1; (5)

has been proven for continuous frequency distribution

functions gðxÞ of non-zero width and for H being indepen-

dent of h; c:c: stands for complex conjugate. Other require-

ments include jaðx; tÞj � 1 and some analytic continuity

conditions.1,2

In what follows, we extend this approach by rigorously

proving the asymptotic attractiveness of the OA manifold in

the case of H and x depending on an additional parameter g
that may also influence h. Equivalently, we include a time-

and g-dependence of f and h in (3b). By this, we allow for an

intrinsic relation between h;H, and x or h; f , and h, respec-

tively. As of today, the attractiveness of the OA manifold in

the (time- and) parameter-dependent case has only been

hypothesized11,18 but not proven.

II. PARAMETER-DEPENDENT SYSTEMS

When including additional parameters at the oscillator

level, the dynamics (1) becomes

_hj ¼ Xðxj; gjÞ þ Im½Hðgj; tÞ e�ihj �: (6)

The natural frequency X of oscillator j may therefore deviate

from xj, which promotes further heterogeneity among oscil-

lators. Moreover the driving field H may depend on gj. The

right-hand side of (6) expresses a certain dependence on the

(index of the) j-th oscillator. Hence, such a dependence is no

longer exclusive to the sinusoidal coupling but also affects

the natural frequency Xðxj; gjÞ and the driving field Hðgj; tÞ.
When considering g a random variable, we may regard

gj to be drawn from a distribution function gðgÞ. Likewise xj

may be drawn from a (different) distribution function. The

oscillator-specific parameter gj may change this distribution

function in the oscillator’s favor. Therefore, we here incor-

porate a joint distribution gðx; gÞ in the normalization condi-

tion (5). In general, x and g are not independent and the

joint distribution consists of two nested distributions. We

hence replace Xðxj; gjÞ by xðgjÞ. Then, in the continuum

limit (6) reads

@thðg; tÞ ¼ xðg; tÞ þ Im½Hðg; tÞ e�ih�: (7)

The relation through g becomes now even more evident as

the temporal derivative of h has become partial.

Again, one can introduce a distribution function

qðh;x; g; tÞ, which now additionally depends on g. And

again, this distribution function satisfies the continuity equa-

tion (2) with velocity field (7). In line with the parameter-

independent case, in which the distribution function gðxÞ of

the natural frequencies x had non-zero width,1,2 we assume

that the distribution function gðgÞ of the parameter g also has

non-zero width. The frequency x, thus, cannot be constant

but depends on g. Likewise, the driving field H depends on g.

Importantly, these two terms exhibit so an implicit depen-

dence on h, such that the proof for the attractiveness of the

OA manifold as has been derived in Ref. 2 may no longer

hold. However, there is a strong numerical incentive that the

OA manifold fully covers the long-term behavior of the

dynamics of the population of parameter-dependent phase

oscillators; see, e.g., Refs. 4–10 and 18–23.

In the following, we demonstrate the proof of this con-

jecture for a particular class of parameter-dependent systems.

We consider g to follow a Lorentzian distribution and

assume that x depends linearly on g, i.e., xðg; tÞ ¼ a � gþ c,

where, without loss of generality, we set a¼ 1 and consider

c ¼ cðtÞ 2 L1;locðRÞ a locally integrable, and in particular,

piecewise smooth, function. Our line of argument follows

closely that of Ott and Antonsen2 but we extend their results

whenever necessary. We would like to note that our findings

remain valid for a larger class of distribution functions as has

been depicted in detail in Ref. 3. We will comment on this
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and consider more general g-dependencies of x in Sections

IV and V.

Let gðgÞ be a Lorentzian centered around g ¼ g0 with

width D, i.e., gðgÞ � Lðg0;DÞ. For the aforementioned linear

dependency xðg; tÞ ¼ a � gþ c, we have ~gðxÞ ¼ ĝðgÞ
� Lðg0 þ c;DÞ with frequency x ¼ xðgÞ that, in general,

will depend on g. In this case, x is fully described by (the dis-

tribution of) g and the distribution density reduces to

qðh;x; g; tÞ ¼ qðh; g; tÞ.24 This can be expanded as a Fourier

series in h similar to Eqs. (5) and (6) in Ref. 2, where it is fur-

ther decomposed into qðh; g; tÞ ¼ ĝðgÞ=ð2pÞ � ½1þ qþðh; g; tÞ
þq�ðh; g; tÞ�. Next to the assumption that the analytic contin-

uation of qþ (q�) into ImðhÞ > 0 (ImðhÞ < 0) has no singu-

larities and decays to zero as ImðhÞ ! þ1 (ImðhÞ ! �1),

we exploit the symmetry of the Fourier expansion and focus

on qþ. In particular, we expect qþ to fulfill these conditions

initially, i.e., qþðh; g; 0Þ can be continued into the complex

g-plane, is analytic in ImðgÞ < 0, and decays to zero for

ImðgÞ ! �1. These conditions are satisfied for all t> 0.1

We can further decompose qþ into two parts, qþ ¼ q̂þ
þq̂0þ, where q̂0þ lies on the OA manifold and follows the

dynamics given by Eq. (9) in Ref. 2. For the sake of com-

pleteness, this dynamics prescribes the evolution of the

Fourier coefficients q̂0þ to the form q̂0nðg; tÞ ¼ ½aðg; tÞ�
n

and

reads

@taþ igaþ 1

2
Ha2 � H�ð Þ ¼ 0 : (8)

The quantity q̂þ, on the other hand, is a solution of

@tq̂þ þ @h xþ 1

2i
He�ih � H�eihð Þ

� �
q̂þ

� �
¼ 0: (9)

Both the frequency x and the field H may depend explicitly

on g. To guarantee that the dynamics (6), whose state at time

t can be represented by the afore-defined order parameter z(t)
in its continuous form

zðtÞ ¼
ð1
�1

ð2p

0

qðh; g; tÞeihdhdg ; (10)

is asymptotically attracted by the OA manifold, it suffices to

show that

lim
t!þ1

ðþ1
�1

q̂þðh; g; tÞĝðgÞdg ¼ 0; (11)

holds. Before showing this, however, we would first like to

remark that, without loss of generality, the center of the

Lorentzian frequency distribution ĝðgÞ � Lðg0 þ c;DÞ can be

considered zero since we may introduce a change of variables,
~h ¼ h� ðg0tþ CðtÞÞ, where C(t) is an antiderivative of c(t).
Furthermore, we can adjust (11) by substituting ĝ by g.

If q̂þ is analytic in the lower half g-plane and decays to

zero as ImðgÞ ! �1, one can multiply (9) by gðgÞdg and

integrate the result by employing the residue theorem.

Hence, the integrals can be evaluated at the residue of the

enclosed pole of gðgÞ at g ¼ �iD. We find

@tq̂þ h;�iD; tð Þ þ @h

�
�iD � q̂þ h;�iD; tð Þ

þ 1

2i

� ðþ1
�1

H g; tð Þq̂þ h; g; tð Þg gð Þdg e�ih

�
ðþ1
�1

H� g; tð Þq̂þ h; g; tð Þg gð Þdg eih

��
¼ 0:

The two remaining integrals can be determined provided that

H and H� have no singularities in the lower half g-plane and

do not increase “too” fast for ImðgÞ ! �1. Since g is a

Schwartz function, we only need H to diverge at most sub-

exponentially. For common choices of H, as listed in Ref. 2,

these requirements are met indeed, which yields

@tfþðh; tÞ þ @h½vðh; tÞfþðh; tÞ� ¼ 0 ; (12)

v h; tð Þ ¼ �i Dþ 1

2
e�ihH tð Þ � eihH� tð Þ
� �� �

: (13)

Here, we substituted fþðh; tÞ ¼ q̂þðh;�iD; tÞ and HðtÞ
¼ Hð�iD; tÞ. These equations agree exactly with Eqs. (17)

and (18) in Ref. 2. Hence, following the same reasoning

around Eqs. (19)–(31) in Ref. 2, one can conclude that (11) is

fulfilled. To underscore the line of argument, we would like to

give a short sketch of the proof. First, by introducing a confor-

mal transformation of the upper half complex h-plane into the

unit disc via w ¼ eih, one can rewrite (12) and (13) as

d

dt
~f þ w; tð Þ þ ~f þ w; tð Þ@w~v w; tð Þ ¼ 0; (14)

where ~f þ and ~v are the transformed functions from (12) and

(13), and d=dt ¼ @=@tþ ~v@=@w. (14) can be integrated using

the method of characteristics for linear and homogeneous

partial differential equations.25 Here, we require ~f þ 2
C2ðRÞ but ~v does not need to be continuous. This yields

~f þðw; tÞ ¼ ~f þðWðw; 0Þ; 0Þ exp ½�lðw; tÞ�; (15)

as solution with

lðw; tÞ ¼
ðt

0

@w0~vðw0; t0Þjw0¼Wðw;t0Þdt0; (16)

and the characteristics are given by

@t0Wðw; t0Þ ¼ ~vðWðw; t0Þ; t0Þ; (17)

with final condition Wðw; tÞ ¼ w. Finally, in order to show

that ~f þðw; tÞ ! 0 for t!1, which, by (15), we prove that

lim
t!1

Re ½lðw; tÞ� ¼ þ1: (18)

The details for the rather lengthy computation can be found

in Ref. 2. We here would only like to mention that the inte-

gral in (16) is split into three distinct parts, each of which is

evaluated and while two of them remain bounded, the third

diverges at the rate Dt, presuming D > 0. This eventually

completes the proof and underlines the importance that the

distribution function gðgÞ must have non-zero width D. We

would also like to note that in the final step of the proof, the

103101-3 B. Pietras and A. Daffertshofer Chaos 26, 103101 (2016)



continuity of v is required, i.e., H in (13) must be continuous.

If one includes, e.g., square functions in the time-dependent

parts of the frequency term and/or driving field, one is con-

fronted with jump discontinuities, which become present in

the right-hand side of (13) either directly or indirectly via the

order parameter z(t). A closer look at Ref. 2, however, con-

firms that for small jumps the reasoning can be guaranteed

and for proper choices of a time constant T their Eq. (31)

holds. Thus, we can argue that OA attractiveness will be

maintained even in the case of discontinuities, which also

confirms our rather long assumption for c(t) to be in

L1;locðRÞ in the linear dependence of xðgÞ ¼ agþ c.

So far, we only considered a Lorentzian distribution and

some linear dependence of x on g. However, our result can

be extended to a much broader class of distribution functions

gðgÞ, non-linear dependencies xðgÞ, or even joint distribu-

tions gðx; gÞ in the case of Xðx; gÞ; see Section IV below.

Hence, it is proper to say, that the asymptotic attractiveness

of the OA manifold for parameter-dependent systems of cou-

pled phase oscillators is generic. Note that the proof remains

identical if h ¼ hðtÞ does not depend on the parameter g, that

is, when there is no correlation between specific oscillators

and their dynamics. We call this case “weak” parameter-

dependence, which has been coined in several earlier studies,

e.g., Refs. 11–13 and 18, where parameters were introduced

as auxiliary variables. Our result therefore confirms the

attractiveness of the OA manifold also in this case, as has

simplifyingly been taken for granted in the afore-cited

studies.

III. NETWORKS OF QIF AND THETA NEURONS

As mentioned above, there is a variety of recent papers

that showed numerically how the dynamics of networks of

theta neurons is time asymptotically attracted by the OA

manifold.4–6 Recently, Montbri�o and co-workers studied

how the macroscopic dynamics of a network of quadratic

integrate-and-fire (QIF) neurons is described by a low-

dimensional system by using a so-called Lorentzian ansatz.7

By transforming the QIF neurons into a network of theta

neurons, their Lorentzian ansatz does resemble the OA

ansatz with parameter-dependent frequency and driving

field, as considered in Section II.

To be more precise, the dynamics of the membrane

potential Vj of a QIF neuron may be described by

_Vj ¼ V2
j þ Ij ; if Vj � Vp ; then Vj  Vr; (19)

for j ¼ 1;…;N. Here, Ij denotes an input current, Vp a peak

value, and Vr a reset value. Once the membrane potential Vj

reaches Vp, the neuron emits a spike, and Vj will be reset to

Vr. Commonly, the limit Vp ¼ �Vr !1 is considered. The

input current Ij consists of a neuron-specific quenched com-

ponent gj, a common time-dependent input I(t), and a cou-

pling term JsðtÞ, combining the synaptic weight J and a

smooth mean synaptic activation s(t), resulting in

Ij ¼ gj þ JsðtÞ þ IðtÞ: (20)

The latter two time-dependent components are identical for

all neurons in the network. In order to describe the macro-

scopic behavior of the network, Montbri�o and co-workers

used the Lorentzian ansatz

q Vjg; tð Þ ¼ 1

p

x g; tð Þ
V � y g; tð Þ½ �2 � x g; tð Þ2

; (21)

with center yðg; tÞ and time-dependent half-width xðg; tÞ,
which turns out to exhibit the long-term solution for the dis-

tribution of the membrane potentials. The properties xðg; tÞ
and yðg; tÞ that define the distribution function (21) are also

closely linked to the firing rate of the neuronal population

and to the mean membrane potential, respectively. While the

Lorentzian ansatz applies to the (membrane voltage) dynam-

ics of QIF neurons, we are here primarily interested in the

phase dynamics. Using Vj ¼ tanðhj=2Þ, one can transform

(19) and (20) into theta neurons26

_hj ¼ ð1� cos hjÞ þ ð1þ cos hjÞ½gj þ J � sðtÞ þ IðtÞ�: (22)

In (22), the time-independent injected current gj is drawn

from a distribution function gðgÞ. For the sake of legibility,

we abbreviate the non-autonomous part of (22) as

J � sðtÞ þ IðtÞ ¼ cðtÞ � 1 :

Rearranging terms and considering the thermodynamic limit,

one can rewrite (22) as

@thðg; tÞ ¼ �ðh; g; tÞ ¼ Xðg; tÞ þ Im½Hðg; tÞe�ih�; (23)

with Hðg; tÞ ¼ ið�1þ gþ Jsþ IÞ ¼ iðgþ c� 2Þ and Xðg; tÞ
¼ gþ c; cf. Ref. 7.

To apply our result from above, one has to show that H
does not diverge exponentially when ImðgÞ ! �1, and

that c(t) possesses an antiderivative. On the one hand, for

the components of c(t) with s(t) being smooth and I(t) piece-

wise smooth and (locally) integrable, there will always

exist an antiderivative of c(t). On the other hand, we have

HðgÞ ¼ igþ const, such that H grows only linearly for

ImðgÞ ! �1. Hence, we find that the OA manifold does

asymptotically attract the macroscopic behavior of a net-

work of coupled theta neurons. Due to the existence of a

conformal mapping between the quantity wðg; tÞ ¼ xðg; tÞ
þ iyðg; tÞ and the function aðg; tÞ defining the OA manifold

(4),27 see also Eq. (15) in Ref. 7, we have also proven the

attractiveness of the Lorentzian ansatz (21) for a network of

QIF neurons.

IV. GENERAL PARAMETER DISTRIBUTIONS

As already mentioned in Section II, the assumptions of

a linear relation between x and g and of g being drawn

from a Lorentzian can be loosened in many respects. We

first consider gðgÞ to still be a Lorentzian centered around

g ¼ g0 with width D, i.e., gðgÞ � Lðg0;DÞ. The linear

dependency xðg; tÞ ¼ a � gþ c may be generalized by con-

sidering both a ¼ aðtÞ and c ¼ cðtÞ time-dependent. Then,

by the common transformation properties for Lorentzian
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(Cauchy) distributions, x follows a Lorentzian of the form

gðxÞ � Lðag0 þ c;DjajÞ. Let a 6¼ 0 be constant. Then, a

similar change of variables, ~h ¼ h� ðag0tþ CðtÞÞ, with

C(t) being the antiderivative of c(t), keeps the distribution

function centered around 0. Without loss of generality, we

set a¼ 1; even if a ¼ aðtÞ and a(t)> 0 or aðtÞ < 0 for all

t> 0, the rescaling of h retrieves that we can stick to our

assumption a¼ 1. If, however, a changes sign at, say, t¼ t0,

then the scale parameter Djaj tends to zero for t! t0. Due

to (4), also qðh;x; tÞ will exhibit a d-peak at t¼ t0. In this

case, our results are not readily applicable.3 However, if

_aðt0Þ 6¼ 0, then we can shift the initial time to zero, t0 7! 0.

Whenever qþðh;x; t0Þ satisfies the necessary initial condi-

tions, the OA manifold will remain attracting for all t > t0,

given that t0 ¼ maxft 2 R j aðtÞ ¼ 0g.
We proceed with more general cases of frequency and

parameter distributions. In Ref. 3, the authors elegantly

extend the original proof, which considers only Lorentzian

frequency distributions: Instead of demanding analytic con-

tinuity of both the frequency distribution gðxÞ and the initial

condition into the whole lower x-half plane, it suffices that

g and the initial condition have analytic continuations into

a strip S defined by 0 � ImðxÞ > �r and �1 � ReðxÞ
� þ1 with r > 0, where neither of them has singularities

and both approach zero as jxj ! 1. Thereby, the class of

applicable distribution functions includes Gaussians, sech-

distributions, and many more, and even multimodal distribu-

tions can be incorporated as long as these functions have

finite non-zero widths; see references in Ref. 3. This

approach can be adopted and used in our g-parameter-

dependent case. For this, let us assume again individual

oscillators given by (6). As mentioned in Section II, we

might be confronted with a nesting of the distributions ~gðxÞ
and gðgÞ for x and g. In particular, the latter may determine

the first in an oscillator-specific way. That is the reason why

the resulting distribution function ĝðgÞ can become arbi-

trarily complicated. However, as long as the analytic contin-

uations of ~g and g into the strip S (for some r > 0 as defined

above) do not have singularities, and neither ~g nor g features

a d-peak in their time-evolutions, also ĝ will behave as

required. An additional requirement is that the product

Hðg; tÞĝðgÞ satisfies these conditions, too. This means that

we have to find a strip S0 	 S, defined by 0 < r0 � r, in

which Hĝ has an analytic continuation, does not have singu-

larities, its time evolution does not feature d-peaks (if neces-

sary we have to reset the initial time point after such a

peak), and that we require jHðgr þ igi; tÞĝðgr þ igiÞj ! 0 for

jgrj ! 1 and 0 > gi > �r0. In particular, H must not grow

faster than ĝ decays, such that the OA manifold continues to

capture the long-term dynamics of the system.

Revisiting the example from Section III, where HðgÞ
¼ iðgþ c� 2Þ and ĝðgÞ � Lðg0 þ c;DÞ, we find that ĝ
decays exponentially for jgrj ! 1 such that H must not

increase at an exponential rate. In fact, H does not have

any singularities in the whole complex g-plane (except for

jgj ! 1), and Hðgr þ igiÞ ¼ �gi þ igr þ const ¼ OðgrÞ for

jgrj ! 1. Consequently, for large jgrj, the product Hĝ will be

dominated by ĝ such that all assumptions are fulfilled. Hence,

we can confirm again the attractiveness of the OA manifold.28

We would like to remark that initial conditions of the

oscillator distribution function, qðh; g; 0Þ, play an important

role. If they fail to be satisfied, this may hinder the OA mani-

fold to attract the dynamics. For an example, we would like

to refer to Appendix C of Ref. 29, in which the specific time

point has to be determined appropriately in order to set up

promising initial conditions. A more thorough investigation

into necessary regularity conditions of the initial conditions

can be found in Ref. 79.

V. APPLICATIONS – REALISTIC SETTINGS

So far, we only considered non-independent frequency

and parameter distributions, ~gðxÞ and gðgÞ, respectively. In

general, however, one cannot take this “simple” dependence

for granted. Moreover, the additional parameter might be

multi-dimensional, i.e., g 2 Rn with n> 1. When consider-

ing the thermodynamic limit of infinitely many coupled

oscillators, the dynamics (6) may obey

@thðg; tÞ ¼ Xðx; g; tÞ þ Im½Hðg; tÞ e�ih�: (24)

Employing the OA ansatz for this system, one has to encoun-

ter distribution functions given by

q h;x; g; tð Þ ¼
g x; gð Þ

2p
1þ

X1
k¼1

a x; g; tð Þkeikh þ c:c:

" #( )
;

ð
Rn

ð1
�1

ð2p

0

q h;x; tð Þ dh dx dg ¼ 1;

(25)

the joint distribution gðx; gÞ is a major modification to the set-

ting considered before. Does the OA manifold remain attract-

ing? (24) suggests the phase h ¼ hðg; tÞ to depend on the

parameter g in line with our notion of parameter-dependent

systems. But it is unclear whether the OA manifold is attract-

ing even without this particular correlation between phase,

natural frequency, and driving field. If, however, the OA

attractiveness can be proven for systems with generalized nat-

ural frequency X and driving field H as in (24), this will allow

for a further and even broader extension of the existing theory.

In the following, we first list a few examples for which numer-

ical simulations have been reported and that give a strong

incentive that the OA ansatz may indeed be valid. We will

show how our proof can be adopted, thereby confirm the OA

attractiveness, and set the numerical results on solid ground.

Last, we provide some general properties of X and H for

which the OA ansatz holds.

We start with the Winfree model15 which is an early

mathematical description of synchronization phenomena in

large populations of biological oscillators. Rewritten in terms

of (24), this model takes the form

@th ¼ Xðx; g; tÞ þ Im½Hðg; tÞe�ih�
Xðx; g; tÞ ¼ xþ rgðtÞ; Hðg; tÞ ¼ e�ibgðtÞ; gðtÞ ¼ ehðtÞ;

(26)

where h(t) is a smooth function depending only on the mean

field z(t) but not on the phase itself.30 In particular, this

model contains time-dependent parameters, see also Ref. 31.
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Next, we consider reaction-diffusion systems with het-

erogeneous, self-oscillating elements. In particular, we study

the mean-field version of the complex Ginzburg-Landau

equation, whose equation describes a population of globally

coupled limit-cycle oscillators. Hence, we can rewrite the

dynamics in the form of (24). By introducing a shear (or non-

isochronicity) parameter g as an additional random variable

and transforming the system through a phase reduction, the

governing equations in the continuum limit read19–21

@th ¼ Xðx; g; tÞ þ Im½Hðg; tÞe�ih�
Xðx; g; tÞ ¼ xþ Kg and Hðg; tÞ ¼ Kzð1� igÞ;

(27)

where K denotes the coupling strength and z ¼ zðtÞ is the

order parameter. The frequency x and the shear g are drawn

from a joint distribution gðx; gÞ. In contrast to Section II, we

explicitly allow the additional parameter g to be drawn from

another frequency distribution. For the joint distribution, one

has to address two scenarios. Either the random variables are

independent, such that the joint distribution can be split into

gðx; gÞ ¼ g1ðxÞg2ðgÞ, or they are not. Iatsenko and co-

workers, who independently investigated the Kuramoto

model with both distributed natural frequencies x and dis-

tributed coupling strengths g, coined the term uncorrelated
joint distributions when the two random variables x and g
are independent, as opposed to correlated joint distributions,

see Refs. 22, 23, and 32. Furthermore, frequency-weighted

coupling,33,34 i.e., the driving field additionally depends on

x, H ¼ Hðx; g; tÞ, can be approached within the formalism

introduced above.

As a third point, we will deal with systems that are not

all-to-all coupled but exhibit some particular (and sparse)

network topology. Therefore, these networks can barely be

studied analytically. Although it was conjectured and

numerically illustrated by Barlev, Antonsen, and Ott35 in

2011 that the OA ansatz can be extended for uniform in-

degree, Erd€os-R�enyi, and scale-free networks, a thorough

proof has as to yet not been delivered. Fortunately, the

upcoming branch of heterogeneous mean fields36 presents a

promising loophole to overcome this obstacle of intricate

network topologies. We will prove that heterogeneous mean

field models indeed fall in a category whose mean field

dynamics can be described along the OA ansatz. Given a

network with a particular degree distribution, it is possible

to introduce the so-called degree-block variables, whose

dynamics govern the evolution of all nodes which have the

same degree k. This approach reveals the same equations as

the annealed networks approximation,17,37 which can hence

be considered equivalent. Recent studies considered the het-

erogeneous mean fields of the Kuramoto model, e.g., on

scale-free38–40 and random Erd€os-R�enyi networks.38 The

starting point is a specifically coupled Kuramoto network

with coupling strength K and adjacency matrix A ¼ ðaijÞ
with i; j ¼ 1;…;N

_hj ¼ xj þ K
XN

k¼1

ajk sinðhk � hjÞ: (28)

We can cluster various node dynamics by replacing the adja-

cency term with an expectation value for their node degree

gj. Ideally, the underlying topology exhibits some well-

defined degree distribution PðgÞ. In the continuum limit

N !1, these node degrees are substituted in the phase

dynamics as weighted, distributed coupling strengths, so that

the governing dynamics read

@thðg; tÞ ¼ Xðx; g; tÞ þ Im½Hðg; tÞe�ih�
Xðx; g; tÞ ¼ x and Hðg; tÞ ¼ KgzðtÞ;

(29)

where x and g are drawn from a joint distribution

gðx; gÞ ¼ PðgÞg1ðxÞ. This setup is amenable to, e.g., ran-

dom fields, as has been presented in Ref. 40 where oscillators

are enforced through local fields, which find their way into

the specific forms for X and H.

In all these different classes of parameter-dependent net-

works, we will show how the OA attractiveness can be

regained.

A. Winfree model

As said, the Winfree model describes macroscopic syn-

chronization phenomena of large oscillator systems whose

individual nodes are naturally pulse-coupled with one another.

The introduction of phase response curves (PRC) allows for

quantifying how the phase of an oscillator responds to the

pulse-like perturbations from the other oscillators. The general

form of the Winfree model reads at the single node level

_hj ¼ xj þ Q hj

� � e
N

XN

k¼1

P hkð Þ; (30)

where e denotes the coupling strength, Q is the PRC, and P is

a pulse-like signal. Following the notation of Paz�o and

Montrbri�o in Ref. 30, we consider PRCs with sinusoidal shape

QðhÞ ¼ r� sinðhþ bÞ; (31)

with an offset parameter r, and a phase-lag b. Moreover, we

assume the pulse-like signal to be smooth

PðhÞ ¼ PnðhÞ ¼ anð1þ cos hÞn; (32)

with n 2N�1 controlling the width of the pulses, and an is a

normalizing constant. In the thermodynamic limit, we regain

(26) as

@th ¼ xþ erhðtÞ þ Im½ee�ibhðtÞe�ih�; (33)

where the coupling function incorporates the smooth mean

field

h tð Þ ¼ hn tð Þ ¼
ð2p

0

Pn hð Þdh

¼ 1þ 2 n!ð Þ2
Xn

k¼1

Re zkð Þ
nþ kð Þ! n� kð Þ!

; (34)

with z the common (Kuramoto) order parameter (10). The

frequency Xðx; tÞ ¼ xþ cðtÞ with cðtÞ ¼ erhðtÞ has a form
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identical to Section II, where x follows a Lorentzian fre-

quency distribution gðxÞ. Since the order parameter z(t) is

bounded with jReðzÞj � 1, we have hðtÞ � 0 for all t � 0.

Furthermore, the driving field does not depend on additional

parameters, so that our proof can be directly applied, con-

firming that the OA ansatz holds and the OA manifold

indeed captures the long-term dynamics of the Winfree

model.

An alternative proof for the case of time-dependent fre-

quency and driving field can be found in Ref. 31. However,

as we have depicted in Section IV, our proof generalizes

their findings and extends them to a broader class of fre-

quency distribution functions gðxÞ. Of particular interest in

the non-autonomous extension is also the matter of disconti-

nuities. Recall that in Section III, we introduced a time-

dependent input current I(t), see (20), which can, e.g., take

the form of a square function with jump-discontinuities. Our

proof applies to this specific feature and confirms existing

numerical results.7

B. Limit-cycle oscillations with shear

Investigating collective synchronization usually

addresses networks of coupled elementary oscillatory units.

The dynamics of these units may be described in their nor-

mal form as

_. ¼ .ð1� .2Þ ; _h ¼ xþ gð1� .2Þ; (35)

where . denotes the radius and x determines the frequency

of rotation on the stable limit cycle with .ðtÞ 
 1. The

parameter g quantifies the shear, or non-isochronicity, of the

flow, i.e., how strongly perturbations away from the limit

cycle modify the phase dynamics. When we consider an all-

to-all coupled population of N � 1 of these oscillatory units,

we arrive at the mean-field version of the complex

Ginzburg-Landau equation with dissipative coupling

_zj ¼ zj 1þ i xj þ gjð Þ � 1þ igj

� �jzjj2
h i

þ K

N

XN

k¼1

zk � zjð Þ;

(36)

zj ¼ .je
i/j . Heterogeneity among the population is promoted

by having the frequency xj and shear parameters gj drawn

from a distribution function gðx; gÞ. In the weakly coupled

case, i.e., the coupling strength jKj is small, a phase reduc-

tion allows us to describe the dynamics of the system by

their phases only. In the continuum limit N !1, we can

introduce the phase distribution function qðh;x; g; tÞ. Note

that x and g are independent, so that neither of them is

redundant. Accordingly, the order parameter z takes now the

form

zðtÞ ¼
ð1
�1

ð1
�1

ð2p

0

qðh;x; g; tÞeih dhdxdg: (37)

Thus, the phase dynamics reads

@th ¼ xþ Kgþ Im½KzðtÞð1� igÞe�ih�; (38)

and the phase distribution function satisfies the continuity

equation

@tqþ @hðvqÞ ¼ 0; (39)

with v the right-hand side of (38), see also Refs. 19 and 21.

Using the notion of (24), the frequency and the driving field

are both time-varying and depend on the additional shear

parameter g

Xðx; g; tÞ ¼ xþ Kg ; Hðg; tÞ ¼ KzðtÞð1� igÞ: (40)

To ensure that the OA manifold indeed exhibits the mean

field dynamics of this system with shear, we have to adapt

our proof from Section IV for the joint distribution gðx; gÞ.
The general idea is again to decompose the distribution

function q in Fourier space into

q h;x; g; tð Þ ¼
g x; gð Þ

2p
1þ qþ h;x; g; tð Þ þ q� h;x; g; tð Þ
� 	

;

(41)

and use symmetry assumptions to focus on qþ, which again

will be decomposed into qþ ¼ q̂þ þ q̂0þ. While q̂0þ lies on

the OA manifold and has Fourier coefficients q̂0þ;n
¼ ½aðx; g; tÞ�n, q̂þ solves

@tq̂þþ@h X x;g;tð Þþ
1

2i
H g;tð Þe�ih�H g;tð Þ�eih

 �� �

q̂þ

� �
¼0:

(42)

The assumptions on the analytic continuation properties of

Section IV hold—in particular, we need analytic continua-

tions with respect to both x and g into strips Sx and Sg.

Hence, we have to show that

lim
t!1

ð1
�1

ð1
�1

q̂þðh;x; g; tÞ gðx; gÞ dxdg ¼ 0: (43)

Discussing general solutions of (43) given an arbitrary joint

distribution function is beyond the scope of this paper.

However, for particular gðx; gÞ, we can affirm the attractive-

ness of the OA manifold for these parameter-dependent sys-

tems. To begin with, we use the assumption of Montbri�o and

Paz�o that the joint distribution can be written as the product

of two Lorentzians19

g x; gð Þ ¼ g1 xð Þg2 gð Þ ¼
d=p

x� x0ð Þ2 þ d2

c=p
g� g0ð Þ2 þ c2

:

(44)

Multiplying (42) with gðx; gÞ and integrating over ðx; gÞ,
we can use Fubini’s theorem (on the assumption of integra-

bility of Xgq̂þ and Hgq̂þ) and compute the double integral

by changing the order of integration. First, we can evaluate

the integral over x by applying the residue theorem as in

Section II and then move on to the second integral, which

reads
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@tq̂þ h;x0 � id;�ic; tð Þ ¼ �
ð1
�1

@h X x0 � id; g; tð Þ þ 1

2i
H g; tð Þe�ih � H g; tð Þ�eih

 �� �

g2 gð Þq̂þ h;x0 � id; g; tð Þ
� �

dg:

While the term
Ð

Xg2q̂þ can be evaluated at the pole g
¼ g06ic (6 depending on the contour of integration, which

again depends on the coupling K, see also Ref. 19), we have

to ensure that the product Hðg; tÞg2ðgÞ vanishes for

ImðgÞ ! 61. Indeed, the linear growth of H in g, see (40),

will be dominated by the exponential decay of g2, such that

the residue theorem can be applied here, too, which results

finally in (12) and (13), from which the claim follows as pre-

sented in Section II. As has been shown in Section IV, the

restrictions to unimodal Lorentzians can be dropped and the

OA attractiveness is sustained. Here, we can even handle d-

functions as long as one of the partial distribution functions

has finite width: due to the special form of Xðx; g; tÞ, the OA

ansatz holds for homogeneous frequencies xj ¼ x while the

shear is heterogeneous and the coupling K> 0 does not

vanish.

The case in which the joint distribution gðx; gÞ is no

longer uncorrelated, i.e., if the first equality in (44) fails,

demands a more careful investigation in order to estimate the

long-time evolution of q̂þ. Although the ultimate goal is to

categorize adequate joint distributions that allow for the OA

ansatz, there might appear a variety of uncertainties for a

general proof. For instance, to the best of our knowledge, it

is an open problem whether and how singularities can appear

in joint distributions given smooth marginal distributions.

This issue becomes even more intricate in the case for multi-

dimensional parameters g 2 Rn; n 2N. However, there are

certain approaches using the OA ansatz for parameter-

dependent systems with correlated joint distributions, which

we would like to briefly revise.

The introduction of shear into the oscillator system

shows how an additional parameter can be treated as a ran-

dom variable and thereby changes the natural frequency and

driving field of the original Kuramoto model. A more funda-

mental approach has been presented by Petkoski and co-

workers in Refs. 22, 23, 31, and 32: Given the Kuramoto

model with heterogeneous natural frequencies, they assume

the coupling strengths to be drawn from a distribution func-

tion. That is, their model reads

_hj ¼ xj þ
Kj

N

XN

k¼1

sin hk � hj

� �
; (45)

with ðx;KÞ following a joint distribution gðx;KÞ. Given the

strong resemblance between their numerical simulations and

the predictions via the OA ansatz, the authors realized that

the latter “formulas were derived on the assumption of at least

asymptotic validity of the OA ansatz.”22 They also investi-

gated necessary initial conditions with respect to their analytic

continuation and applicability to the OA ansatz. Unfortunately,

they did not prove this applicability; their system dynamics

(45) does not belong the classes of systems considered in the

proofs by Ott and Antonsen.1–3 Recall, a general characteriza-

tion of correlated joint distributions gðx;KÞ 6¼ g1ðxÞg2ðKÞ

that are applicable for the extended OA ansatz is hardly feasi-

ble. However, for three examples used in the literature, we can

prove that the OA manifold defines the asymptotic evolution

of the whole system.

First, let gðx;KÞ � dðK � kÞ½x2 þ e�x2 ��1
, see Fig. 1 in

Ref. 23. The specific form with the d-function in K reduces

system (45) to the common Kuramoto model with heteroge-

neous frequencies x / g1ðxÞ ¼ ½x2 þ e�x2 ��1
, which can

be dealt with along the proof of the original OA ansatz.

The other two examples are more elaborate in that the

joint distribution functions are given by22

gðx;KÞ ¼ ð1� pÞdðK � K1ÞLðx; x0; c1Þ
þ pdðK � K2ÞLðx;�x0; c2Þ; (46)

with p 2 ð0; 1�, and

gðx;KÞ ¼ CðKÞ
XNq

n¼1

qnLðx; xn; cnÞ with
XNq

n¼1

qnðKÞ ¼ 1:

(47)

Here, Lðx; xn; cnÞ denotes a Lorentzian with width cn > 0

and centered around x ¼ xn, and CðKÞ is a multimodal-

d-function. For properly chosen q1;2, the distributions (47) can

be regarded a generalization of (46) so that it suffices to con-

sider the former. For simplicity, let Nq¼ 2, i.e., gðx;KÞ be a

bimodal joint distribution. Inserting gðx;KÞ in the definition

of the order parameter (37), we can decompose the latter into

zðtÞ ¼ q1z1ðtÞ þ q2z2ðtÞ with q1 þ q2 ¼ 1. Put differently, we

can view our system as two all-to-all coupled populations

with population-specific coupling strengths K1;2. Given that

the frequency distributions are Lorentzians of finite width c1;2,

the results for two-population/bimodal Kuramoto models as in

Refs. 41–43 can be readily applied, which confirms the attrac-

tiveness of the OA manifold for this kind of joint distribution.

Note that we do not require qn 2 ½0; 1� but may choose, e.g.,

q1 ¼ d=ðd� nÞ > 1 and q2 ¼ �n=ðd� nÞ < 0. Then, the

bimodal distribution results from one Lorentzian being sub-

tracted from the other one, which, in principle, allows the cen-

tral minimum between the two peaks to converge to zero.42

The case of multiple Kuramoto populations with specific cou-

pling strengths can be approached by transforming the system

into one global system whose oscillators’ frequencies follow a

multimodal distribution consisting of weighted inhomoge-

neous unimodal distributions, which can mirror the underlying

coupling topology across populations.44

Admittedly, the aforementioned examples are not exhaus-

tive let alone complete. They represent a concise set of a

broad variety of joint distribution functions. Nevertheless, we

believe that our results may be a major breakthrough for the

applicability of the OA ansatz for systems with more intricate

distribution functions. First extensions concentrated on a multi-

ple-population-approach and have been presented in Refs. 13,

45, and 46. Skardal and Restrepo45 focused on hierarchical
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synchrony effects in modular networks and investigated how

local and global synchrony evolve differently by allowing for

different subpopulation sizes, heterogeneous intra- and inter-

population coupling strengths as well as population-specific

frequency distributions. Reformulating their approach results

in (47). This establishes rigorously the agreement of the pre-

dictions by the OA ansatz and their numerical results. So and

co-workers, on the other hand, aimed for synchronization crite-

ria in a network of two coupled populations with static and

time-varying coupling topologies.46 Their governing equations

can be cast into (46) when additionally considering K ¼ KðtÞ
to be time-dependent. Also, they numerically determined mac-

roscopic chaos by assuming a single network with bimodally

distributed natural frequencies.13 Combining our results from

this section together with the preceding part where we incorpo-

rated non-autonomicity, we again corroborate the numerous

numerical findings by providing the ingredients to prove the

implicit assumption that the OA ansatz holds for these kinds of

parameter-dependent and non-autonomous systems.

C. Heterogeneous mean field models

While the general case of uncorrelated joint distributions

has already been covered in the preceding Section V B, we

would like to concentrate on the specific derivation of the

heterogeneous mean field model. Recall the standard

Kuramoto model on a given network

_hj ¼ xj þ K
XN

k¼1

ajk sinðhk � hjÞ; (48)

where K is the coupling strength and the adjacency matrix is

given by A ¼ ðaijÞi;j¼1;…;N . We substitute the adjacency val-

ues ajk 2 f0; 1g by their expectation values hajki 2 ½0; 1�,
which are given by

hajki ¼
gjgk

Nhgi : (49)

Introducing the complex order parameter as

z ¼ 1

Nhgi
XN

k¼1

gkeihk ;

the dynamics for all nodes with the same degree gk read

_hk ¼ xk þ KgkImðze�hkÞ:

In this special form, in which the single nodes are replaced

by block-degree variables, we returned to the all-to-all cou-

pling. For a given degree distribution PðgÞ property (49) also

holds in the continuum limit N !1 where the governing

dynamics read

@thðg; tÞ ¼ xþ Im½KgzðtÞe�ih�; (50)

with x and g being drawn from a joint distribution

gðx; gÞ ¼ PðgÞg1ðxÞ. As above we can introduce a phase

distribution function qðh;x; g; tÞ, which fulfills the continu-

ity equation @tqþ @hðvqÞ ¼ 0 with v the right-hand side of

(50). Note, however, that depending on the underlying net-

work topology and its degree distribution PðgÞ, one has to

choose the domain of g properly. In the case of a scale-free

network, the degree distribution follows PðgÞ / g�c with

c > 1. Hence the normalization conditions for the distribu-

tion function q obeyð1
1

ð2p

0

qðh;x; g; tÞ dhdg ¼ g1ðxÞ andð1
�1

ð2p

0

qðh;x; g; tÞ dhdx ¼ PðgÞ:

We can apply the OA ansatz as above. By the same reason-

ing as in Section V B, we can so prove the OA attractiveness

for heterogeneous mean field models, rendering also non-

globally coupled oscillator networks applicable to have

their mean field dynamics evolved on a low-dimensional

manifold.

Before elaborating more on coupling schemes other than

global coupling, we briefly discuss further topological net-

work effects such as nodal correlations between in and out

degrees, correlations between nodal frequencies and degrees,

and degree as well as the so-called frequency assortativity in

the formation of links. Recent numerical findings by

Restrepo, Ott, and Skardal47,48 exploited assortative networks

and gave a strong incentive to believe that their dimensional-

ity reduction techniques along the OA ansatz do capture the

dynamics of the full network. An assortativity function al0!l

represents the probability that a link exists from an oscillator

with target property l0 to one with property l. Using this, one

can indicate an exact instruction on how to construct a net-

work model of the form (48). The nodal properties l are cho-

sen in such a way that the network displays, e.g., a particular

degree47 (l ¼ k), frequency48 (l ¼ x0), or even a combined

(l ¼ fk;x0g) assortativity. The key ingredient for relating

this to the OA ansatz is the reformulation of the order param-

eter. We first define

zðl; tÞ ¼
X
l0

Pl0al0!l

ð ð
ql0 ðh;x; tÞeihdhdx; (51)

where ql0 ðh;x; tÞ ¼ qðh;x; l0; tÞ is the common phase distri-

bution function with target property l0, see (25), Pl0

¼ Ppðl0Þ is a normalized target property distribution, and

al0!l ¼ aðl0 ! lÞ the assortativity function; for details see

Refs. 47 and 48. Then, we can integrate over all possible

properties l—note that we write the sum over the target

properties l0 also in integral form—and we arrive at the

order parameter

z tð Þ ¼ 1

hgi

ð ð
Pp lð ÞPp l0ð Þa l0 ! lð Þ

�
ð ð

q h;x; l0; tð Þeihdhdx dl0dl; (52)

with hgi the average degree. Given a specific degree distribu-

tion PðgÞ, one finally ends up with (50), from which we can

follow the lines of argument as presented above to complete

the proof. The addition of assortativity in the network
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topology enriches the existing theory further. It discloses

many new qualitative effects on the dynamics such as transi-

tions between steady state, periodic, quasiperiodic attractors,

and even macroscopic chaos may emerge without external

driving or time-varying parameters.

D. Non-local coupling

Two months before Ott and Antonsen published their

ansatz, Ko and Ermentrout investigated the creation of par-

tially locked states in a network of identical all-to-all cou-

pled oscillators due to inhomogeneous coupling.49 Instead of

heterogeneity of the oscillators’ frequencies, it was the cou-

pling heterogeneity that led to partial synchronization. Carlo

Laing analytically investigated this network of globally cou-

pled oscillators with coupling strengths drawn from a power-

law distribution50 along the line of the OA ansatz—recall the

resemblance to the heterogeneous mean field approach for

scale-free networks. Assuming “nearly” identical oscillators,

i.e., the frequencies x were drawn from a Lorentzian with

width 0 < D 1, he could verify the earlier results that

were derived via a self-consistency argument49 and extend

them by including a thorough bifurcation analysis. Our find-

ings in Section V B put these results on a solid mathematical

ground.

Of particular interest is Laing’s work on a ring of oscil-

lators.50,51 For a given ring topology, the typical coupling

scheme is neither local neighbor-to-neighbor nor global

coupling. Instead, the oscillators are non-locally coupled via

a coupling kernel G. We assume that each oscillator

j ¼ 1;…;N has some fixed spatial position xj 2 ½�p; p�, a

natural frequency xj drawn from a continuous distribution

function gðxÞ with non-zero width, and interacts with the

others depending on the distance between their sites modulo

periodic boundary conditions. The governing dynamics read

_hj ¼ xj þ
2p
N

XN

j¼1

G xk � xjð Þsin hk � hj þ a
� �

; (53)

where a is a phase-lag parameter and G : R! R a continu-

ous even and 2p-periodic coupling function.52 We retrieve

global coupling, if G 6¼ 0 is constant. Commonly used cou-

pling functions G are of exponential form GðxÞ � e�jjxj with

j > 0 or of trigonometric form GðxÞ ¼ 1=2pð1þ A cos xþ
B sin xÞ with A > 0;B � 0. The reflection symmetry of G is

lost for B 6¼ 0. In the continuum limit, the velocity field (7)

becomes the right-hand side of the continuum version of

(53)

@th ¼ xþ Im½Hðx; tÞe�ih� ;

Hðx; tÞeia ¼
ðp

�p
Gðx� yÞ

ð1
�1

ð2p

0

qðh; y;x; tÞeih dhdxdy:

(54)

While the inner two integrals have the form of a local com-

plex order parameter z(y, t), measuring the synchronization

degree of oscillators around y, we can interpret the last inte-

gral as a convolution of the local order parameter with the

(spatial coupling) kernel G. In particular, we can regard the

dynamics @thðx; tÞ of an oscillator at position x as being con-

trolled by the local mean field H(x, t). Unlike the case of

global coupling, the order parameter has become space-

dependent and thus the driving field. However, a similar

“physical picture” as for global coupling is valid: practically

we deal with an assembly of independent oscillators under

the control of a common forcing field.52,53 We now go a step

further and interpret the space variable x as a subpopulation

index.54 Equivalent to the block-degree variables in the het-

erogeneous mean field approach, we consider the subpopula-

tion index as a parameter that follows a particular, in this

case a uniform, distribution function. Hence, (54) represents

the governing dynamics of a parameter-dependent system,

for which we proved the OA attractiveness in the preceding

Sections V B and V C.

E. External forcing and time delay

Already in their original work, Ott and Antonsen pro-

posed that their ansatz extends to external forcing and the

incorporation of time delays. However, recent results that

leaned against the OA ansatz for tackling more intricate

issues of external forcing and/or time delays went beyond

the reach of the original proof. Therefore, we first revisit the

existing theory and revise the proof appropriately with the

concepts introduced above.

Ott and Antonsen approached the forced Kuramoto

model

_hj ¼ xj þ
K

N

XN

k¼1

sin hk � hj

� �
þ g sin -t� hj

� �
; (55)

in Ref. 1. Rearranging terms, moving in a rotating frame,

h! hþ -t, and considering the thermodynamic limit, we

can rewrite (55) in the form

@th ¼ Xðx;-Þ þ Im½Hðx;K; g; tÞe�ih�;
Xðx;-Þ ¼ x� - ; Hðx;K; g; tÞ ¼ KzðtÞ þ g;

(56)

with z(t) the common Kuramoto order parameter. While Ott

and Antonsen provided a proof for systems with constants

K;-; and g, conjoining thereby the numerical findings and

the extensive analysis by Childs and Strogatz,55 we general-

ized their proof extensively in Section II. By this, the addi-

tional parameters - and g that characterize the forcing can

be both random and time-dependent variables. This adapta-

tion renders a more detailed analysis of, for instance, the cir-

cadian rhythm problem possible. One extension has been

published very recently addressing the east-west asymmetry

of jet-lag,56 where a discontinuous phase quantity p is added

to model the travel across time-zones. The adapted model

reads

_hj ¼ xj þ
K

N

XN

k¼1

sin hk � hj

� �
þ g sin -t� hj þ p tð Þ

� �
; (57)

where p jumps from one constant value to another depending

on the corresponding time-zone. In particular, p(t) is locally

integrable, which allows for a thorough analytic description
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of how the human organism may adapt after several cross-

time-zone travels. This extends the existing work where the

authors solely focused on the recovery dynamics of circadian

rhythms after a single travel “shock.”

To address the presence of time delays, let us first con-

centrate on time-delayed coupling, i.e., the response of oscil-

lator j at time t depends on the state of another oscillator k at

time t� skj. Here, skj is some specific delay time for the

interaction. In general, the single oscillator dynamics may be

given by

_hj tð Þ ¼ xj þ
K

N

XN

k¼1

sin hk t� skjð Þ � hj tð Þ
� �

: (58)

There already exists a plethora of studies considering the

case in which skj follows some given distribution function

hðsÞ, e.g., Refs. 50, 57, 58 and 80. That the OA ansatz also

holds in this case, has been proven by Ott and Antonsen in

Ref. 2, generalizing their original idea of identical time

delays, skj ¼ s0 for all j; k ¼ 1;…;N, i.e., hðsÞ ¼ dðs� s0Þ,
see Ref. 1. The driving field H of the original velocity field

(3a) is replaced by

H ¼ K

ð
X

hðsÞzðt� sÞds ;

where X 	 R is the domain of the time delay distribution h
and z(t) the common Kuramoto order parameter. Slightly

more elaborate and not covered by Ott and Antonsen’s origi-

nal proof is the extension to so-called coupling adaptation.59

The coupling strength is no longer constant but slowly adapts

depending on the current coupling strength and the delayed

order parameter. As long as the function that models the

adaptation process is locally integrable, our extended proof

guarantees the OA attractiveness for such time-varying

parameter-dependent systems. For this reason, we believe

that the main numerical work by Skardal and co-workers59

can also be analytically substantiated. This will not only con-

tribute to exploring the underlying phenomena of explosive

synchronization60,61 but also enhance the modeling of infor-

mation processing and memory effects, for which network

adaptation is crucial.62–64

VI. RELAXATION DYNAMICS

As discussed, we allow time-varying parameters to affect

the oscillator dynamics. The change of parameters comes

with its time scale(s). Also, it can be periodic. This periodicity

may influence the evolution of the mean field and thereby the

OA manifold. Therefore, the relation between this periodicity

and the characteristic time of the system to approach the man-

ifold needs to be investigated. If the relaxation dynamics onto

the manifold is way slower than the characteristic time scale

of the time-varying manifold itself, then our findings will

remain true for the limit t!1. They are, however, of minor

interest for describing the transient behavior of the mean field.

Several numerical results7,22,23,31 suggest that the relaxation

to the OA manifold is reasonably fast, in some cases even

instantaneous. To address this analytically, we briefly recall

the proof for the attractiveness from Section II. After having

Fourier expanded the phase distribution function qðh; g; tÞ,
and then decomposed the positive Fourier modes into a part

that already lies on the manifold, q̂0þ, and a residual part q̂þ,

we showed how the latter converged to zero in a weak sense,

cf. (11). We can extract the relaxation time to the OA mani-

fold from out of the proof: From (12) and (13), we obtain a

solution fþðh;tÞ¼ q̂0þðh;�ir;tÞ, with r0>r>0 where

q̂0þðh;g;tÞ admits an analytic continuation into the strip

S¼fg2Cj�1�ReðgÞ�1;0� ImðgÞ��r0g; the solution

(15) obeys

~f þðw; tÞ ¼ ~f þðWðw; 0Þ; 0Þ exp ½�lðw; tÞ� ;

hence the relaxation time s is by definition

const � exp �t=sð Þ ¼ exp �l w; tð Þ½ � ) s ¼ t

Re l w; tð Þ½ �
:

(59)

Put differently, Re½lðw; tÞ� scales with rt, such that s ¼ 1=r.

The wider the frequency distribution becomes, the larger r
can be chosen. Thus, one may argue that the characteristic

time scale decreases with increasing heterogeneity among

the single oscillators. This relation has already been noted

for a particular example of a Lorentzian frequency distribu-

tion by Ott and Antonsen in Ref. 1. It has been investigated

in more detail by Petkoski and Stefanovska for the non-

autonomous Kuramoto model.31 Interestingly, there is an

intrinsic relation between the frequency inhomogeneity and

the coupling strength. Therefore, at critical coupling

strengths, which distinguish different dynamical regimes, the

relaxation times tend to infinity, which has been reported

independently by Petkoski and Stefanovska31 and Yoon

et al.39 for the full Kuramoto network, its non-autonomous

version and the heterogeneous mean field model.

For the non-autonomous case, we would like to mention

that the proof presented in Section II entirely holds for con-

tinuous time-varying parameters. Introducing discontinuities

in either the frequency X and/or the driving field H, however,

will eventually lead to a non-continuous right-hand side of

(13)—due to H itself, or via the order parameter z, which

absorbs the time-varying part of X and influences H directly

or indirectly. While employing the method of characteristics

still can be performed, estimating the integral in (16) cannot

exploit the continuity assumption and a proper evaluation

has to be circumvented. In spite of this sinister outlook,

numerical results remain promising; for instance, the simula-

tions in Ref. 7 with a square input function (Figs. 2(a), 2(c),

2(e), and 2(g)). A possible way to overcome this obstacle

might be to approximate the jumps by smooth sigmoid func-

tions, which might be valid as long as the height of the jumps

is lower than their length. Another more rigorous approach

might be to find weak solutions for (12) and (13) and esti-

mate their long-time behavior. There, a starting point could

be the very recent results by Dietert, Fernandez and co-

workers, who investigated stability properties of different

dynamical regimes of the Kuramoto model in a mathemati-

cally rigorous way, confirming the exponential decay to the
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manifold.65–67 More details are way beyond the scope of our

paper.

Interestingly, the approach by Dietert and others is

based on the idea of “Landau damping” in plasma physics,

see also Ref. 81. Strogatz, Mirollo, and Matthews were the

first who incorporated this concept in order to understand

relaxation dynamics of the Kuramoto model.68,69 They

showed that for frequency distributions gðxÞ supported on

the whole real axis, the decay towards the incoherent state is

exponentially fast for coupling strengths below the critical

threshold, K < Kc. If gðxÞ has compact support, i.e., g is

non-zero only on a compact interval

½�c; c� 	 R; 0 < c <1, the rate may be considerably

slower, even polynomial. In the example they used to illus-

trate their result, the authors assumed the frequencies x to be

distributed uniformly on I ¼ ½�c; c�, i.e., gðxÞ ¼ 1=2c if

x 2 I , and 0 otherwise. The jump discontinuities of g on

@I , however, prohibited an analytic continuation of g into a

strip S in the lower complex x-plane, contradicting the

required conditions for applying the OA ansatz.3 That is why

the proofs above cannot be applied here, and our argumenta-

tion about the relaxation times remains unaffected.

Last but not least, we would like to add that decay times

typically depend on initial conditions. Mirollo used Fourier

transform theory to prove that only if the initial conditions

satisfy the indicated analyticity condition, exponential con-

vergence to the incoherent solution can be guaranteed (at

least in the case of unimodal frequency distributions g(x)).79

Applying the same method to other solutions and initial con-

ditions not being as regular as wanted, however, has not

been successful so far. It remains an open problem to prove

exact (and presumably non-exponential) decay rates when

refraining from analytic initial conditions. Another intricate

issue has been pointed out by Pikovsky and Rosenblum, who

demonstrated that for identical macroscopic, i.e., mean field,

initial conditions, the microscopic initial states can lead to

very different transient dynamics towards the OA manifold,

see Section 3.2 in Ref. 18. A more thorough investigation

about this specific topic has not been undergone, yet, but

might shed light on the underlying dynamics of the micro-

scopic variables of large oscillatory systems in contrast to its

mean field behavior.

VII. DISCUSSION AND CONCLUSION

The OA ansatz has proven rather fruitful for investigat-

ing the macroscopic behavior of systems of coupled phase

oscillators in terms of a low-dimensional system. Although

parameter dependence has already been mentioned in Ott

and Antonsen’s original work, parameters were merely con-

sidered auxiliary variables and the velocity field was

required to incorporate the phase only through a sinusoidal

coupling term.

Our main result was to prove that the g-dependence sus-

tains the time-asymptotic attractiveness of the OA manifold

for systems of coupled oscillators. For this we required that

the driving field H does not have singularities in the complex

g-plane and that it diverges at most sub-exponentially for

ImðgÞ ! �1, next to the conditions in the original Ott and

Antonsen formulation.1,2 Furthermore, we assumed the fre-

quency xðg; tÞ to be linear in g. We were able to depict the

proof step by step. Subsequently, we loosened the restrictive

assumptions and showed that our results remain valid for a

much broader class of distribution functions gðgÞ as well as

more complex dependencies of the driving field HðgÞ and

the natural frequencies xðgÞ on the parameter g.

Although the main idea of introducing a common param-

eter g was to correlate the driving field and the natural fre-

quency with their specific oscillator, our proof is identical for

the case when g does only influence the mean field dynamics.

By this, we have proved the claim in Ref. 3 that the OA mani-

fold remains attractive in the “weak” parameter-dependent

case when H depends on “other non-phase-oscillator varia-

bles obeying auxiliary dynamical systems.”

Common choices of H and x usually fulfill the afore-

mentioned assumptions as stated in Section II. That is, our

result can be immediately applied in a variety of circumstan-

ces. Here, we highlighted an application in mathematical

neuroscience. By this, our findings strengthen the theory of

coupled theta neurons: The many recent numerical findings

of Ref. 7 and the references therein are finally set in a solid

mathematical framework. Moreover, the link between QIF

neurons and theta neurons has been underscored by proving

the attractiveness of the Lorentzian ansatz.

We generalized and extended existing proofs for non-

autonomous systems. In particular, we addressed the

Winfree model, which is biologically more realistic than the

Kuramoto model and therefore closer to applications. We

also addressed coupled oscillatory systems with an additional

shear parameter, another important tool to render the

Kuramoto model more realistic. The major novelty was our

rigorous proof of the OA attractiveness for systems with

uncorrelated joint distribution functions when more parame-

ters than only the natural frequencies are treated as a random

variable. This finding opened the way for networks with spe-

cific underlying coupling topologies other than the restrictive

global coupling. Using the heterogeneous mean field

approach, we showed how these networks can be treated

along the OA ansatz. First steps were also taken in the direc-

tion of correlated joint distributions.

All in all, we consider the explicit dependence on an

additional parameter g of both the oscillator’s phase and the

(non-sinusoidal) components, an important extension intro-

ducing an intrinsic relation between phase, frequency, and

driving field of an oscillator. The latter two are correlated

with the phase so that the g-dependence does not allow for

applying the original theory.

Still, there are several open problems concerning the

mean field dynamics of an oscillatory system and its descrip-

tion by a low-dimensional system. A first urgent one is the

case of d-peaked frequency distributions. Numerical simula-

tions70 and heuristic arguments hint at convergence of the

OA manifold, where a proper mathematical derivation is

omitted under the pretence of “nearly identical oscil-

lators.”51,71,72 A thorough proof would render the OA ansatz

rigorously applicable to “chimera states,” a topic that is par-

ticularly en vogue; see, e.g., the recent review paper by

Panaggio and Abrams.73 Importantly, such a proof has to
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circumvent the main argument of Ott and Antonsen’s origi-

nal proof, where the width D > 0 of the distribution gðxÞ
allowed for a consequent evaluation of the mean field

dynamics. On the other hand, Pikovsky and Rosenblum74

already showed that more complicated dynamics can emerge

from the OA manifold when describing the system along the

Watanabe-Strogatz (WS) ansatz.75 Deviations from the OA

ansatz appear only if the WS constants of motion are not uni-

formly distributed over the whole domain, but only over a

compact subset. Given (a) the direct correspondence between

the constants of motion and the initial conditions of phases

in the OA ansatz,18,75 and (b) the necessary requirements on

(analytic continuation properties of) the initial conditions, it

may be worth investigating the influence of nonuniform dis-

tributions of the constants of motion and whether this may

hinder the initial conditions of phases to satisfy the require-

ments of the OA ansatz.

Another intriguing open problem is whether the mean

field dynamics is attracted by a low-dimensional manifold

when the parameter-dependence of the frequency and driv-

ing field is extended by an explicit dependence on the phase.

A recent example is given by Laing,76 who considered the

driving field H to follow a dynamics that explicitly depends

on the phase h. This system exhibits partial synchronization

patterns, which are also covered by the OA ansatz, but any

attempt to apply the OA ansatz has been avoided “due to the

dynamics of the extra variables.”76

When the coupling term incorporates higher harmonics,

see, e.g., Refs. 77 and 78, no low-dimensional analytic solu-

tion for the mean field evolution has been found. This is

another open question whether further generalizations of the

work of Ott and Antonsen1 can be rigorously manifested.

We believe that our current proof for parameter-dependent

networks is a good starting point for tackling these important

issues.
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