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A B S T R A C T

Modeling and interpreting (partial) synchronous neural activity can be a challenge. We illustrate this by deriving
the phase dynamics of two seminal neural mass models: the Wilson-Cowan firing rate model and the voltage-
based Freeman model. We established that the phase dynamics of these models differed qualitatively due to an
attractive coupling in the first and a repulsive coupling in the latter. Using empirical structural connectivity
matrices, we determined that the two dynamics cover the functional connectivity observed in resting state ac-
tivity. We further searched for two pivotal dynamical features that have been reported in many experimental
studies: (1) a partial phase synchrony with a possibility of a transition towards either a desynchronized or a (fully)
synchronized state; (2) long-term autocorrelations indicative of a scale-free temporal dynamics of phase syn-
chronization. Only the Freeman phase model exhibited scale-free behavior. Its repulsive coupling, however, let
the individual phases disperse and did not allow for a transition into a synchronized state. The Wilson-Cowan
phase model, by contrast, could switch into a (partially) synchronized state, but it did not generate long-term
correlations although being located close to the onset of synchronization, i.e. in its critical regime. That is, the
phase-reduced models can display one of the two dynamical features, but not both.
Introduction

Characterizing the underlying dynamical structure of macroscopic
brain activity is a challenge. Models capturing this large-scale activity can
become very complex, incorporating multidimensional neural dynamics
and complicated connectivity structures (Izhikevich and Edelman, 2008;
Deco and Jirsa, 2012). Neural mass models, or networks thereof, that
cover the dynamics of neural populations offer a lower-dimensional and
therefore appealing alternative (Deco et al., 2008; Sotero et al., 2007;
Ponten et al., 2010). To further enhance analytical tractability one may
consider the (relative) phase dynamics between neural masses. We pre-
viously showed under which circumstances certain neural mass models
can be reduced to mere phase oscillators (Daffertshofer and van Wijk,
2011; Ton et al., 2014) – see also (Schuster and Wagner, 1990; Hlinka
tshofer).
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and Coombes, 2012; Sadilek and Thurner, 2015) – and thus established a
direct link between these two types of models. A minimal model
describing phase dynamics is the Kuramoto network (Kuramoto, 1975),
which in its original form consists of globally coupled phase oscillators.
Generalizations of this model by adding delays and complex coupling
structures result in a wide variety of complex dynamics (Acebr�on et al.,
2005; Breakspear et al., 2010). Even in its original form, however, the
Kuramoto model is capable of showing non-trivial collective dynamics. A
mere change of the (global) coupling strength can yield a spontaneous
transition from a desynchronized to a synchronized state, i.e. the dy-
namics can pass through a critical regime.

Synchronization of neural activity plays a crucial role in neural
functioning (Fries, 2009). In the human brain, synchronized activity can
be found at different levels. At the microscopic level temporal alignment
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Fig. 1. Coupling structure of both neural mass networks. A proper balance
between excitatory (Ek) and inhibitory (Ik) populations leads to self-sustained
oscillations in the network – see also Appendix B.3. Self-coupling (cEE , cII) is
only present in the Wilson-Cowan network and, hence, plotted in gray. External
inputs are indicated by qk. The coupling matrix Skl connecting the excitatory
populations was based on structural DTI data.

Fig. 2. Illustration of the DTI-derived structural connectivity matrix Skl and the
matrix CF

kl in (6). In the latter we incorporated the inter-pair coupling cEI and cIE
together with the scaled structural connectivity K⋅Skl. The upper left block of CF

kl

has the same structure as Skl. The two diagonals represent the coupling strengths
cEI and cIE .
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in neuronal firing is a prerequisite for measurable cortical oscillations
(Pfurtscheller and Lopes Da Silva, 1999). However, it also manifests itself
at the macroscopic level in the form of global resting state networks
(Biswal et al., 1995; Deco et al., 2011). Synchronization properties are
modulated under the influence of task conditions in, e.g., motor perfor-
mance (vanWijk et al., 2012), visual perception (Singer and Gray, 1995),
cognition (Fell and Axmacher, 2011) and information processing (Fries
et al., 2007; Singh, 2012; Voytek and Knight, 2015). Epilepsy, schizo-
phrenia, dementia and Parkinson's disease come with pathological syn-
chronization structures (Schnitzler and Gross, 2005; Broyd et al., 2009).
When aiming for a concise but encompassing description of brain dy-
namics, a macroscopic network model should capture this wide range of
synchronization phenomena.

According to the so-called criticality hypothesis (Beggs, 2008), the
human brain is a dynamical system in the vicinity of a critical regime. Its
dynamics is located at the cusp of dynamic instability reminiscent of a
non-equilibrium phase transition in thermodynamic systems (Chialvo,
2010; Beggs and Timme, 2012). The conceptual appeal of the critical
brain lies in the fact that networks operating in this regime show optimal
performance in several characteristics relevant to cortical functioning
(Shew and Plenz, 2013). Critical dynamics often display power laws in
multiple variables (Stanley, 1971) and have been observed in, e.g., size
and duration distributions of neuronal avalanches (Beggs and Plenz,
2003) and EEG cascades (Fagerholm et al., 2015). Power-laws are also
manifested as scale-free autocorrelation structures of the amplitude en-
velopes of encephalographic activity (Linkenkaer-Hansen et al., 2001;
Palva et al., 2013). Very recently, long-range temporal correlations have
been reported in fluctuations of the phase (synchronization) dynamics in
neural activity (Botcharova et al., 2015b; Daffertshofer et al., 2018). The
nature of these power-law forms in the correlation structure can be
quantified by the Hurst exponent H (Hurst, 1951). Its value characterizes
the correlations between successive increments of the signal, with H >

0:5 and H < 0:5, the first marking persistent behavior, i.e. positive,
long-range correlations, in the time series, and the latter anti-persistent
behavior, i.e. a negative auto-correlation.

In this study we considered the phase descriptions of two classical
neural mass networks: theWilson-Cowan firing rate and Freeman voltage
model, both equipped with neurobiologically motivated coupling and
delay structures. Coupling and delay structures were obtained from DTI
data and the Euclidean distances between nodes, respectively. To antic-
ipate, the two models lead to two qualitatively different phase synchro-
nization dynamics.

Methods

Wilson-Cowan model

The first neural mass model we studied is the Wilson-Cowan model
that describes the dynamics of firing rates of neuronal populations
(Wilson and Cowan, 1972). We always considered properly balanced
pairs of excitatory and inhibitory populations, Ek ¼ EkðtÞ and Ik ¼ IkðtÞ,
respectively. We placed such pairs at every node of a network. Nodes
were coupled to other nodes through the connections between excitatory
populations given by a DTI-derived coupling matrix Skl forming a
network of k ¼ 1;…;90 nodes. We illustrate the basic structure of this
network in Fig. 1 and the coupling matrix in Fig. 2, left panel. The dy-
namics per node k was cast in the form

μk _Ek ¼ �Ek þ Q

"
aE

 
cEEEk � cEI Ik � θE þ qk þ K

X
l¼1

N

SklElðt � τklÞ
!#

μk _Ik ¼ �Ik þ Q ½aIðcIEEk � cII Ik � θIÞ�;
(1)

where the coupling constants cEI , cIE , cEE, cII quantify the coupling
strength within each (E/I) pair. The function Q ½x� ¼ ð1þ e�xÞ�1 is a
sigmoid function that introduces the thresholds θE and θI that need to be
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exceeded by the total input into neural mass k to elicit firing; the pa-
rameters aE and aI describe the slopes of the sigmoids. The delays τkl were
determined by conduction velocity and the Euclidean distance between
nodes k; l. In the following, delay values are given in milliseconds.
Appropriate choices of the time constants μk and external inputs qk
guaranteed self-sustained oscillations in the alpha band (8–13Hz). By
randomizing the constant external inputs qk; μk across k we introduced
heterogeneity in oscillation frequencies.
Freeman model

The Freeman model (Freeman, 1975) describes the mean membrane
potentials Ek; Ik of neural populations. In analogy to (3) its dynamics per
node can be given by



€Ek ¼ �ðαk þ βkÞ _Ek � αkβkEk þ αkβkqk þ αkβkγK
X
l¼1

N

Skl Q
�
Elðt � τklÞ � θ

σ

�
� αkβkcEIγ Q

�
Ik � θ

σ

�
€Ik ¼ �ðαk þ βkÞ _Ik � αkβkIk þ αkβkcIEγ Q

�
Ek � θ

σ

�
;

(2)
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where k ¼ 1;…;N with N being the number of excitatory populations –
the corresponding schematic is again given in Fig. 1. The sigmoid func-
tion Q ½x� here covers the effects of pulse coupled neurons in the pop-
ulations adjusted by the scaling parameter γ (Marreiros et al., 2008). The
parameters αk; βk represent mean rise and decay times of the neural re-
sponses in population k, which we here varied to introduce frequency
heterogeneity in the system. Analogous to (1) appropriate parameter
values guaranteed self-sustained oscillations in the alpha frequency band.

In (2) we separated the excitatory and inhibitory nodes to stress the
similarity between both networks. For the sake of simplicity, however, we
rather combine both equations in (2) into a single one. To this end we
introduce the variableV ¼ ½E; I�T and incorporate the terms cEI , cIE, and the

scaled structural couplingmatrixK⋅S into an ‘overall’ couplingmatrix CF ¼�
K⋅S �cEI1
cIE1 0

�
with 1 and 0 denoting the identity and the zero matrix,

respectively; see Fig. 2, right panel. This abbreviation yields the form

€Vk ¼�ðαk þβkÞ _Vk �αkβkVk þαkβkqþαkβkγ
X
l¼1

2N

CF
klQ

�
Vlðt� τklÞ�θ

σ

�
; (3)

with k; l ¼ 1;…;2N. In (3), the delays τkl between excitatory nodes are
equal to delays τkl in (2). Note that we assumed delays between the local
pairs of excitatory and inhibitory nodes (½k l� ¼ ½1;…;N; kþ N� and ½k l�
¼ ½lþ N; 1;…;N�) to be negligible.

Phase description

The phase dynamics could be derived by transforming the systems to
their corresponding polar coordinates around an unstable focus. We
described its dynamics in terms of the periodic function AkcosðΩtþ ϕkÞ,
with Ak denoting the amplitude, ϕk the relative phase, and Ω the central
frequency of the oscillation. We averaged the dynamics over one period
2π=Ω under the assumption that the characteristic time scale of the Ak

and ϕk dynamics significantly exceeded this period, i.e.
�� _Ak=Ak

��;�� _ϕk

��≪jΩj. That is, the variables ϕk; Ak evolved slowly enough to be
considered constant within one period. Further, we assumed the time
delays τkl to be of the same order of magnitude as the period of oscilla-
tion, such that they could be captured by model-dependent phase shifts
Δkl in the phase dynamics. More details of the derivation are given in
Appendix B, which builds on Daffertshofer and van Wijk (2011), Ton
et al. (2014). In consequence, both phase dynamics obeyed the form

_ϕk ¼ ωk þ 1
N

X
l¼1

N

Dklsinðϕl � ϕk þ ΔklÞ (4)

with ωk the natural frequency of the oscillator at node k, Dkl the phase
coupling matrix and Δkl the time-delay induced phase shifts. For the
Wilson-Cowan phase model (superscript WC) we obtained

ωWC
k ¼ �Ωþϖk

μk

DWC
kl ¼ K

2μk
Q '
h
χð0ÞE;k

i
aE
�
1þ Λ2

k

�1
2Skl

Rl

Rk

ΔWC
kl ¼ arctanðΛkÞ �Ωτkl

(5)
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where Q ' denotes the derivative of Q resulting from a Taylor approxi-

mation around the points χð0ÞE;k, χð0ÞI;k ; their detailed expressions of the
aforementioned unstable focus are given in Appendix B.1. By virtue of
the definition of Q , one has Q ' � 0. The definition of the parameters Λk

and ϖk can also be found in B.1. In case of the Freeman phase model
(superscript F) the expressions for ωk, Dkl and Δkl read

ωF
k ¼

αkβk �Ω2

2Ω

DF
kl ¼ �αkβk

γ

2Ω
Al

Ak
Q '
h
V ð0Þ
l

i
CF

kl

ΔF
kl ¼

π
2
�Ωτkl;

(6)

here V ð0Þ
l refers to the unstable focus – we again refer to B.1 for details.

It is important to realize that due to the inhibitory coupling cEI , the
coupling matrix CF

kl and hence DF
kl have both positive and negative en-

tries. In contrast, for Skl and hence for DWC
kl we have Skl;DWC

kl � 0. This
change in sign can have major consequences. For instance, the Wilson-
Cowan phase model (5) resembles the Kuramoto-Sakaguchi model with
phase lag Δkl; for τkl ¼ τ ¼ 0 we have Δkl 2 ð0;π=2Þ, and otherwise Δkl 2
ð�π=2; π=2Þ since Ωτkl 2 ð0; π=2Þ and because of our particular choice of
parameters which yields Λk � 0. That is, a transition to full synchroni-
zation can occur if the coupling strength K exceeds a critical value Kc.
However, from (6) it follows that the left upper block of DF

kl contains
negative entries. Together with the π=2 phase shift, the Freeman phase
dynamics is therefore more closely related to the repulsive cosine-variant
of the Kuramoto network (Van Mieghem, 2009; Burylko et al., 2014). As
will be shown below, this qualitative difference in dynamics led to pro-
found contrasts in model behavior.
Simulations

Phase time series ϕkðtÞ were obtained by integrating the system (4)

using either (5) or (6). We first determined the fixed points Eð0Þ
k ; Ið0Þk

(Wilson-Cowan) or V ð0Þ
k (Freeman) around which we observed stable

oscillations. For the latter we also determined the characteristic fre-
quency Ω and amplitudes Ak. These initial estimates were achieved by a
five second simulation of the systems (1)/(3) using an Euler scheme with
time step Δt ¼ 1 ms. The choice for the Euler method was motivated by
the implementation of delays in the coupling terms. Testing a more
elaborated predictor/corrector algorithm (Shampine and Thompson,
2001) revealed little to no difference but required far more numerical
resources.

The control parameters in this study were conduction velocity v and
global coupling strength K. Conduction velocity v determined delay
values τkl, by assuming τkl to be proportional to the Euclidean distance
D kl between nodes k; l, i.e. τkl ¼ D kl=v. The range of coupling strengths
amounted to K ¼ ½0; 0:1; …; 0:7; 0:8�. Conduction velocities were v ¼
½1;2;…10; 12;15;30;60;∞�ms�1 leading to average delay values hτkli ¼
[75, 39, 25, 19, 15, 13, 11, 9.4, 8.4, 7.5, 6.3, 5.0, 2.5, 1.3, 0] ms. We
performed simulations of the phase dynamics (4) only for parameter
values that resulted in oscillations in the underlying neural mass dy-
namics (1)/(2) because only in this case a phase reduction can be
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considered valid (in consequence the range of K values displayed in Fig. 4
varies).

Integration of the phase systems (4) was performed by means of an
adaptive Runge-Kutta (4,5) algorithm with variable step size. Simulation
time T ¼ 302 seconds matched the length of the available empirical time
series, where we discarded the first two seconds of simulation to avoid
transient effects due to the first random initial condition. To exclude

effects of a specific natural frequency distribution of ωð⋅Þ
k , T was split into

twenty bins with random duration Tn > 14 s. The initial condition of bin
n was matched to the last sample of bin n� 1. For each n a new set of
parameter values qk; μk (Wilson-Cowan) or αk; βk (Freeman) was chosen
at random, under the constraint that the characteristic frequency Ω fell
within the alpha band in all cases. The parameters μk; qk; αk; βk, and Tn

were drawn at random but the corresponding sets were kept equal across
all simulation conditions, i.e. for all combinations of K and hτkli. We thus

obtained twenty sets fωð⋅Þ
k ;Dð⋅Þ

kl g. For all parameter values we generated
ten realizations by choosing different initial conditions and permutations

of the set fωð⋅Þ
k ;Dð⋅Þ

kl g for each run. Results were averaged over these re-
alizations for each combination of parameter values.
Comparing model behavior with experimental MEG data

Power-law behavior
Wemeasured the amount of synchronization via the phase coherence,

i.e. the modulus of the Kuramoto order parameter given as

RðtÞ ¼ 1
N

�����X
k¼1

N

eiϕk ðtÞ
�����; (7)

where ϕkðtÞ followed the dynamics (4).
Next, we assessed the autocorrelation structure of RðtÞ by means of a

detrended fluctuation analysis (DFA) (Peng et al., 1994). In DFA the
cumulative sum of a time series yðkÞ, i.e. YðtÞ ¼Pt

k¼1yðkÞ, is divided into
non-overlapping segments YiðtÞ of length Tseg. Upon removing the linear
trend Y trend

i ðtÞ in segment i, the fluctuations FiðTsegÞ corresponding to
window length Tseg are given by

Fi

�
Tseg

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Tseg

∫ Tseg
0

�
YiðtÞ � Y trend

i ðtÞ�2s
: (8)

When these fluctuations scale as a power law, i.e. FiðTsegÞ � ðTsegÞα,
the fluctuations, and hence the associated autocorrelations, can be
considered scale-free. The corresponding scaling exponent α resembles
the Hurst exponent H (Hurst, 1951) and characterizes the correlation
structure (the resemblance is proper if yðtÞ stems from a fractional
Gaussian noise process). We assessed the presence of a power law in Fi in
a likelihood framework by testing this model against a set of alternatives
(Ton and Daffertshofer, 2016). By applying the Bayesian information
criterion (BIC) we could determine the model that constituted the
optimal compromise between goodness-of-fit and parsimony (Burnham
and Anderson, 2002). More details of the DFA and model comparison are
given in A.1.

To determine the significance of the model results, we constructed

surrogate data sets by generating 90 phase times series ϕðsurrÞ
k ðtÞ, which

equalled the number of excitatory nodes. The surrogate phase time-series
consisted of random fluctuations around linear trends sampled from the
ωF
k distribution using the same Tn partitions as in the model simulation

conditions. We used a Wilcoxon rank-sum test to test the results from
surrogate time series against simulated time series in a non-parametric
way. For evaluation of the scaling exponents, we only incorporated
those conditions that showed power-law scaling as assessed by the BIC.

Functional connectivity
We compared spatial correlation structures in terms of the functional
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connectivity matrices generated by both models with an empirically
observed functional connectivity. For the latter we incorporated a pre-
viously published data set (Cabral et al., 2014; Daffertshofer et al., 2018).
We refer to Cabral et al. (2014) for details concerning data acquisition
and preprocessing of both the MEG and the DTI derived anatomical

coupling matrix S that was used in the coupling matrices Dð⋅Þ
kl given in

(5&6). In brief, MEG of ten subjects was recorded in resting state con-
ditions (eyes closed) for approximately five minutes. These MEG signals
were beamformed onto a 90 node brain parcellation (Tzourio-Mazoyer
et al., 2002), such that 90 time-series ykðtÞwere obtained with a sampling
frequency of 250Hz. The signals ykðtÞ were bandpass filtered in the
frequency range 8–12Hz and subjected to a Hilbert transform to obtain
the analytical signal, from which the Hilbert phase could be extracted.

Using the phase time series from both MEG data, ϕðMEGÞ
k ðtÞ, and phase

time series generated by (4), ϕðsimÞ
k ðtÞ, we calculated the pair-wise func-

tional connectivity Pð⋅Þ via the pair-wise phase synchronization in the
form of the phase locking value (PLV) (Lachaux et al., 1999). In its
continuous form its matrix elements are defined as

Pð⋅Þ
kl ¼

����1T ∫ T
0 e

iðϕð⋅Þ
l ðtÞ�ϕ

ð⋅Þ
k ðtÞÞ dt

����: (9)

Note that for PðMEGÞ we removed all individual samples that displayed
relative phases in intervals I around 0 or �π, as for these samples true
interaction and effects of volume conduction could not be disentangled
(Nolte et al., 2004). The intervals I were defined as I ¼ �Iw=2, Iw ¼ Ωc⋅Fs
where Ωc is the center frequency (in this case 10 Hz) and Fs the sampling
frequency. In the simulations we calculated the PLV matrix according to
(19) for each partition Tn and afterwards averaged the thus obtained
twenty PLV matrices.

Synchronization

Although both RðtÞ and Pð⋅Þkl are synchronization measures, they
measure two qualitatively different forms of synchronization, which is
the reason why they offer resolution in either the temporal or the spatial

domain, respectively. Functional connectivity Pð⋅Þkl measures temporal

alignment of two phase time series ϕð⋅Þ
k ðtÞ, ϕð⋅Þ

l ðtÞ by means of an aver-

aging over time in (19), such that Pð⋅Þkl provides resolution in the spatial
domain, as indicated by the subscript kl. In contrast, from (17) it follows
that calculating RðtÞ involves an average over k, i.e. over spatial co-
ordinates, for each time instant t. This measure therefore provides reso-

lution in time. That is, Pð⋅Þkl measures temporal synchronization and offers
spatial resolution, whereas for RðtÞ the opposite holds.

To gain more insight into the mechanisms responsible for the differ-
ential effects on synchronization behavior in the two models, we further
considered the measures*
RðtÞ

+
¼ 1

T
∫ T
0RðtÞdt and

*
Pð⋅Þ
+

¼ 1
2NðN � 1Þ

X
k¼1

N X
l¼1

k�1

Pð⋅Þ
kl ; (10)

that is, hRðtÞi is the temporal average of the order parameter and hPð⋅Þi
corresponds to the average magnitude of pair-wise phase synchroniza-
tion over the network.

Statistics
Model performance in terms of replicating spatial correlation struc-

ture was measured by calculating the Pearson correlation coefficient ρ
between the lower triangular entries of PðsimÞ and PðMEGÞ, where we
excluded the main diagonal to omit spurious correlations. Since the
sampling distribution of the Pð⋅Þ entries are not normally distributed, we
applied a Fisher z-transform before calculating the correlations.
Restricting ourselves to the lower-diagonal entries was sufficient due to
the symmetry in the phase coherence measure. We also excluded the
diagonal entries to avoid spurious correlations resulting from the trivial
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value Pð⋅Þkk ¼ 1.

Results

Power-law behavior

Only the Freeman phase dynamics generated power laws and thus
long-range temporal correlations in the evolution of phase synchroniza-
tion for a broad range of parameter values. In Fig. 3a we display the
results as a function of coupling strength K and mean delay τkl. Since for
none of the parameter values the Wilson-Cowan phase model yielded
power laws, we do not show the corresponding results for this model. The
average value (� SD) of the scaling exponents was α ¼ 0:56� 0:02 for
the Freeman model, which is significantly different from the surrogate
results α ¼ 0:501� 0:012 (p < 10�4). In this average we only considered
those realizations that were classified as power laws. This result quali-
tatively agreed with the observed value in MEG data (α ¼ 0:62, Daf-
fertshofer et al., 2018), as both indicate persistent behavior and thus
long-range temporal correlations.

Fig. 3b provides examples of the log-log fluctuation plots for a single
realization (K ¼ 0:7, hτi ¼ 9:4) for both the Freeman and the Wilson-
Cowan based model (upper and lower panel, respectively). The latter
clearly deviated from linearity indicating that it did not scale as a power
law. There the model selection procedure assigned a piece-wise linear
function (dashed gray in Fig. 3b) to the Fi results confirming the devia-
tion from linearity. Other parameter values yielded similar results for this
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model. The Freeman phase model yielded a power law with scaling
exponent α ¼ 0:56; Fig. 3b, upper panel.
Functional connectivity & synchronization

As said, we quantified functional connectivity as pair-wise phase

synchronization of the phase variables ϕð⋅Þ
k followed either the dynamics

(4) indicated by the superscript ðsimÞ or ðsurrÞ or the instantaneous
Hilbert phase extracted from source-reconstructed MEG data, superscript
ðMEGÞ. Model performance was quantified by means of the Pearson
correlation coefficient ρ between the PðsimÞ and PðMEGÞ matrices. Maximal
PðMEGÞ-PðsimÞ correlations were ρ ¼ 0:56 in both models for parameter
values (K ¼ 0:8; hτkli ¼ 9:4) for the Freeman and (K ¼ 0:7; hτkli ¼ 9:4)
for the Wilson-Cowan phase model (Fig. 4). This value is comparable to
values reported in previous simulation studies (Cabral et al., 2014; Deco
et al., 2013, 2014), but in contrast to the latter two studies no critical
coupling strength at which model-data correlations collapse was found.
The Freeman phase model appeared less sensitive to overall coupling
strength than the Wilson-Cowan phase dynamics.

We mentioned above that RðtÞ and Pð⋅Þkl measure two qualitatively

different forms of synchronization. That Pð⋅Þkl and RðtÞ indeed constitute
two different aspects of synchronization is reflected in the results.
Whereas the qualitative difference in the phase coupling matrices DWC

kl

and DF
kl did affect the autocorrelation structure in RðtÞ (Fig. 3b), i.e. the

Wilson-Cowan model did not resemble power-law behavior while the
Fig. 3. a: DFA results for the RðtÞ autocorrelations gener-
ated by the Freeman phase model as a function of coupling
strength K and mean delay hτkli (in milliseconds). Colors
code the values of the scaling exponents α and are indicated
by the colorbar. In all cases we observed persistent behavior
in line with our empirical findings. Fig. 3b: Examples of the
fluctuation plots for the Freeman phase and Wilson-Cowan
phase model (upper and lower panel, respectively) for K ¼
0:7; hτi ¼ 9:4 together with the linear fits (gray) and the
assigned model (dashed gray; f 10θ in (A.3)); The values on
the x-axis are in milliseconds on a logarithmic scale (based
on segment sizes of 104 to about 106:8 ms). On the vertical
axis the expectation value of Fi is shown that was deter-
mined via the corresponding probability densities ~pn; see
also A.1. The Wilson-Cowan phase model did not result in
scale-free correlations for any of the parameter values, with
typical results for the log-log fluctuation plots similar to the
lower panel in Fig. 3b. The DFA result for the Freeman phase
model (upper panel Fig. 3b) was classified as a power law
with α ¼ 0:56 – this was significantly different from merely
random noise when tested against surrogates.

Fig. 4. a: Pearson correlation values between the
Fisher-z transformed PS and PðMEGÞ functional con-
nectivity matrices for the Wilson-Cowan phase model
as function of coupling K and mean delay hτkli (milli-
seconds). The colored shading codes the correlation
values and correspond to the colorbar on the right-
hand side. The non-shaded area corresponds to the
case in which the correlation was not significant.
Fig. 4b: Similar to Fig. 4a but for the Freeman phase
model. To respect weak coupling, the maximum
coupling strength was set to K ¼ 0:7. Results were
averaged over ten realizations for every parameter
combination.



Fig. 5. a–d: Mean values hRðtÞi as function of delay h
τkli in milliseconds (Fig. 5a) and coupling strength
(Fig. 5c). Black solid lines correspond to the Freeman
phase model results, dashed black lines to those for the
Wilson-Cowan phase model. Empirical values are
indicated by the solid gray lines, surrogate values by
dashed gray lines. Fig. 5b and d shows averaged
functional connectivity hPð⋅Þi as function of delay (in
milliseconds) and coupling strength respectively.
Values are averaged over coupling values K ¼ 0:1;…;

0:7 when displayed as function of delay and over hτkli
¼ 0;…; 75 as function over coupling strength.
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Freeman model did, it had only a minor influence on functional con-
nectivity in that in both cases a similar maximum correlation with the
empirical functional connectivity could be achieved (Fig. 4).

The averagedmeasures hRðtÞi and hPð⋅Þi served to quantify differential
effects on synchronization behavior in the two models. In Fig. 5 we
display the results as function of both delay and coupling together with
the surrogate and MEG data values. As expected from the repulsive
coupling in the Freeman phase model, phases were dispersed with hRðtÞi
values significantly below surrogate values (p < 10�4). In contrast, the
Wilson-Cowan model resulted in a partially synchronized state, which
better corresponded to empirical findings (gray solid lines). In accor-
dance with the results on PðsimÞ-PðMEGÞ correlations, the qualitative dif-
ference between models in hRðtÞi did not transfer to pair-wise
synchronization magnitude hPð⋅Þi. That is, both models yielded signifi-
cantly larger hPð⋅Þi values than obtained for the surrogate data set
(p < 10�4). This was the case despite the spatial desynchronization of the
network of Freeman models.
Fig. 6. Mean values hRðtÞi for large coupling values equivalent to K ¼ 5 (black)
and K ¼ 10 (gray) for the Freeman (solid) and Wilson-Cowan (dashed) phase
models. The gray solid line denotes the surrogate hRi value. While, consistent
with the standard Kuramoto model strong coupling induced a synchronized
state in the Wilson-Cowan phase dynamics, this was not the case for the
Freeman phase model. The delay values hτkli are in milliseconds.
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This striking result led us to further assess the dynamics of both phase
models by supplementary simulations with considerably larger coupling
strengths. These coupling values were beyond the weak coupling
assumption, rendering the validity of the phase dynamics for these
parameter values questionable; see also B.3. It did, however, provide
additional insight into the dynamical properties of the phase model (4),
especially with respect to the synchronizability of these networks. As
shown in Fig. 6, the Freeman phase model did not allow for a (partially)
synchronized state even for large coupling strength. In contrast, for suf-
ficiently small delays the Wilson-Cowan phase model entered a fully
synchronized state. This is consistent with the coupling structure of both
models given by (6) and (5) respectively.

Although the degree of phase synchronization of the Freeman phase
model was consistent with a repulsively coupled phase oscillator
network, the inhibitory connections in CF

kl made a direct comparison with
the repulsive cosine variant of the Kuramoto network non-trivial.
Nevertheless we expected these models to show similar behavior, since
the inhibitory connections were rather sparse compared to excitatory
ones (Fig. 2). To test this, we also considered an alternative: a Freeman
model that only comprised the excitatory part DF

kl, i.e. the left upper block
of this matrix. Results are summarized in Appendix C. In a nutshell, these
results indicate that the scale-free correlation structure displayed by the
Freeman phase model is caused by (the nature of) the coupling between
the excitatory units. Its dynamics can thus be understood by considering
the phase dynamics (4)/(6) as a repulsively coupled Kuramoto network.

Discussion

We contrasted the phase dynamics derived from two seminal neural
mass models, representing the integrated contribution of large numbers
of neurons within populations. Neural mass models have been used for
modeling a wide range of neural phenomena, ranging from the origin of
alpha band oscillations and evoked potentials (Lopes Da Silva et al.,
1974; Jansen and Rit, 1995) to the onset of pathological brain activity
patterns such as epileptic seizures (Breakspear et al., 2006; Rodrigues
et al., 2009). The phase reduction yielded phase oscillator networks that
differed qualitatively in their coupling structure. Nevertheless, both
models performed comparably well in the spatial domain as assessed by

the PðsimÞ-PðMEGÞ correlations, i.e. they resulted in similar pair-wise
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synchronization characteristics as featured by the experimentally
observed data. A related finding has been reported by Mess�e and co-
workers (Mess�e et al., 2014) who showed that model performance in
terms of P correlations was relatively independent of nodal dynamics.
Here it is important to realize that structural connectivity has a high
predictive value for (empirical) functional connectivity (Bullmore and
Sporns, 2009; Hlinka and Coombes, 2012; Ton et al., 2014), which here

could also be confirmed by correlating PðsimÞ
kl and Skl (see Fig. D.1). That

is, both models generated functional connectivity structures that were
highly correlated with Skl. This same notion forms the basis for the
general finding in RSNmodeling studies that optimal model performance
occurs near the critical point (Deco et al., 2011). The critical slowing
down around the bifurcation point allows for a maximal reflection of Skl
into functional connectivity (Deco et al., 2013). We showed that the
reflection of structural into functional connectivity may occur in two
models generating qualitatively different dynamics. This indicates that
an inference about the dynamical regime, in particular regarding criti-
cality, on basis of the P correlations alone is non-trivial; at least for the
phase oscillator models considered here; see also Hansen et al. (2015) for
are related conclusion. Whether this extends to more complex networks
consisting of detailed neuronal models is beyond the scope of the current
study.

In contrast to the pair-wise phase synchronization (PLV), the models
differed qualitatively regarding the phase synchronization quantified by
the phase coherence RðtÞ. In particular, only the Freeman phase model
displayed scale-free autocorrelation structures observed in data,
revealing complex characteristics in its dynamics. The values of the
scaling exponents (α > 0:5) revealed the presence of long-range temporal
correlations, which qualitatively agrees with the correlation structures
reported in brain activity (Linkenkaer-Hansen et al., 2001; Palva et al.,
2013; Botcharova et al., 2015b; Daffertshofer et al., 2018).

In the Kuramoto model (Kuramoto, 1975), critical coupling strength
is the value of the coupling parameter K for which the desynchronized
state loses stability and the system enters a (partially) synchronized
regime (Strogatz, 2000). Here, synchronization is quantified by RðtÞ, and
hence measures spatial synchronization in the network. Functional
connectivity, however, is determined by the temporal alignment of, in
the present study, phase signals ϕlðtÞ, ϕkðtÞ and thus reflects a funda-
mentally different form of synchronization. We showed that these forms
of synchronization were affected differently by the generating dynamics:
pair-wise synchronization largely agreed between models, whereas RðtÞ
did not. The average value and the autocorrelation structure of RðtÞwere
affected by the qualitative difference in coupling structure between
models.

The Wilson-Cowan phase model displayed a transition into a fully
synchronized state for sufficiently large coupling; see Fig. 6. Combined
with the partial synchronization displayed in Fig. 5c and a, this indicates
that the Wilson-Cowan model for K ¼ ½0:1;0:7� is located at the onset of
synchronization, i.e. in its critical regime. Although associated with
critical dynamics (Stanley, 1971; Botcharova et al., 2015a), we did not
observe power-law correlation structures in this model. Similar findings
have been reported by Botcharova et al. (2015a) for phase difference
time series ΦklðtÞ ¼ ϕlðtÞ� ϕkðtÞ, not only in case of the standard uni-
formly coupled Kuramoto network, but also for a more biologically
plausible model incorporating a DTI derived coupling matrix and
distance-related delays, see also Cabral et al. (2011). However,
long-range temporal correlations were observed in ΦklðtÞ as well as RðtÞ
in resting state brain activity in Botcharova et al. (2015b) and Daf-
fertshofer et al. (2018), respectively. This suggests that the critical regime
in Kuramoto-type networks has different properties compared to the
dynamical regime of the resting brain, be the latter critical or not.

The desynchronized state for the repulsive coupling in the Freeman
phase model (6) was consistent with various analytical results (Van
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Mieghem, 2009; Burylko et al., 2014; Pikovsky and Rosenblum, 2009);
cf. Fig. 6. A desynchronized network, however, does not exclude complex
dynamics as reflected in the presence of scale-free autocorrelations in the
Freemanmodel. The topology of this model may be regarded as related to
phase oscillator networks consisting of so-called conformists and con-
trarians studied by Hong and Strogatz (2011), Burylko et al. (2014). The
latter showed that, even for small networks, a variety of complex dy-
namics including chaos may occur. A similar finding has recently been
reported by Sadilek and Thurner (2015), who studied a two-layered
Kuramoto network derived from the same Wilson-Cowan dynamics as
considered here. They identified a chaotic region with the largest Lya-
punov exponents arising at the boundary of synchronization, i.e. in the
critical regime. By changing the value of the delay parameter range, this
model could switch between a synchronized and desynchronized state
through a bifurcation.

Despite the fact that the model in Sadilek and Thurner (2015) and the
Wilson-Cowan phase model in the current study were derived from the
same dynamics (1), both networks are quite different in their topology
and in their delay structure. The model in Sadilek and Thurner (2015)
contained an excitatory and inhibitory layer, whereas this was not the
case in (4)/(5). The reason for this discrepancy is that Sadilek & Thurner
described the oscillatory trajectory solely by the phase variable, whereas
we also took amplitude into account; see also (Schuster and Wagner,
1990; Daffertshofer and vanWijk, 2011). As a consequence the reduction
in dimensionality in the Wilson-Cowan phase description that we found
when deriving (4)/(5) from (1), did not occur in Sadilek and Thurner
(2015). As a consequence, the inhibitory connections in the neural mass
dynamics were retained in the phase model in that study. A second
distinction between both models is the delay structure. In both models
(1) and (2) we regarded the delays between excitatory and inhibitory
units to be negligible compared to those between excitatory units, as
these connections represented long-range connections subject to finite
conduction delays. In contrast, the delay parameter in Sadilek and
Thurner (2015) quantified the delay between excitatory and inhibitory
units and excitatory-excitatory delays were assumed to be zero.

With the two models considered here we could explain two profound
phenomena observed in brain activity. The Freeman phase model
generated the type of autocorrelation structures observed in brain ac-
tivity, but its coupling structure resulted in a desynchronized network,
i.e. low RðtÞ values, that did not agree with MEG recordings (see Fig. 5).
Additionally it could not account for a transition into partially synchro-
nized states, let alone the (pathological) fully synchronized one. In
contrast, the Wilson-Cowan phase model could cover these synchroni-
zation phenomena, but it did not show the complex dynamics associated
with (resting state) brain activity. The fundamental difference in
coupling structure, combined with the analytical results discussed above,
suggests that these dynamical properties are mutually exclusive for the
models considered here.

We are left with the question, whether one of these models could be
modified in such a way that it can exhibit both phenomena. First we have
to admit that our DTI-based construction of anatomy and delays is a clear
simplification of the ’real’ structural connectivity. Adjusting this may
have major consequences for the resulting phase dynamics. The afore-
mentioned study by Sadilek and Thurner (2015) gives an indication for
this, since they showed that a connectivity structure allowing for
comparatively dense inhibitory connectivity yielded complex dynamics
in the form of chaos. Interestingly, in other types of models inhibitory
connections have been shown to be determinants in generating critical
states (Mazzoni et al., 2007; Tetzlaff et al., 2010; Shew et al., 2011) and
capacity of information transfer (Deco and Hugues, 2012; Shew and
Plenz, 2013). However, these results reflected the dynamics within a
neural population rather than the dynamics in the global cortical network
considered here. Neurophysiological findings indicate that the
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long-range connections between areas are excitatory (Kandel et al., 2013;
Douglas and Martin, 2004; Sotero et al., 2007) with inhibitory connec-
tions only providing local inhibitory feedback. From such a neurophys-
iological perspective we regard our coupling structure to be more
realistic in the context of global cortical networks than the one in Sadilek
and Thurner (2015). Thus, although incorporating inhibitory connec-
tions could potentially merge the dynamical properties of the
Wilson-Cowan and Freeman phase descriptions, such a coupling struc-
ture would violate its neurophysiological plausibility and thus the appeal
of deriving these networks from a neural mass dynamics. This is not to
say that the network in Sadilek and Thurner (2015) is unrealistic from a
neurophysiological point-of-view, but both the connectivity and the
delay structure may be more representative of local cortical interactions
than of global (cortical) networks considered here.

As an alternative one may extend the models to the stochastic regime,
e.g., by adding noise to the firing rate or membrane dynamics. Dynamic
noise is known for its capacity to alter the correlation structure of global
outcome variables like the order parameter RðtÞ. Dynamic noise can also
influence synchronization patterns and that not only by causing phase
diffusion or shifting the critical point at which synchronization may
emerge; in the case of common noise, it may even induce synchroniza-
tion. A more detailed discussion of network dynamics under impact of
random fluctuations, however, is far beyond the scope of the current
study.

Delays in networks can lead to very complex dynamics. Since we
considered the dynamics of the relative phases that were assumed to
evolve slowly with respect to the oscillation frequency Ω, the delays
between neural masses mapped to mere phase shifts in (4). Therefore a
comparison of the networks in which delays explicitly influence the
phase interactions, such as in Cabral et al. (2011) and the analytical re-
sults by Kim et al. (1997), Yeung and Strogatz (1999), Choi et al. (2000),
cannot be readily made. In the case of delayed phase interactions, how-
ever, scale-free correlations could not be observed in a phase oscillator
network incorporating a similar coupling scheme to the one employed
here (Cabral et al., 2011; Botcharova et al., 2015a). Taken together, our
findings suggest that phase oscillator networks without dense inhibitory
coupling throughout the whole network, are not capable of showing the
entire dynamic spectrum of resting state brain activity. Whether this
limitation is posed by the phase oscillator network itself or the conse-
quence of collapsing population dynamics onto a low-dimensional
description in the form of a neural mass model remains to be seen.
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Conclusion

We illustrated some challenges when deriving and interpreting the
phase dynamics of neural mass models. As an example we employed
networks of Wilson-Cowan firing rate models and networks of voltage-
based Freeman models. The phase dynamics of these models differed
qualitatively by means of an attractive coupling in the first and a repul-
sive coupling in the latter. While both phase dynamics did cover the
functional connectivity observed in resting state activity, they failed to
describe two pivotal dynamical features that have been reported in many
experimental studies: (1) a partial phase synchrony with a possibility of a
transition towards either a desynchronized or a (fully) synchronized
state; (2) long-term autocorrelations indicative of a scale-free temporal
dynamics of phase synchronization. The phase dynamics of the Freeman
model exhibited scale-free behavior and the Wilson-Cowan phase model
could switch into a (partially) synchronized state. However, none of the
phase models allowed for describing both dynamical features in unison.

There is a range of possibilities to modify these models, e.g., by
misbalancing excitatory and inhibitory units or by introducing delays
that are biologically less plausible than the ones we chose. Alternatively,
one may consider the phase dynamics further away from the onset of
oscillations (Hopf-bifurcation) that limits analytic approaches. By either
of these adjustments one may lose the direct link to the structural con-
nectivity structure. In our example, neither of the phase dynamics can
capture the full dynamical spectrum observed in cortical activity. We
have to conclude that modeling phase synchronization and, in particular,
inferring characteristics of its underlying neural mass dynamics require
great care.
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Appendix A. Data analysis

Appendix A.1. Detrended fluctuation analysis with model comparison

To assess the temporal character of ϕð⋅Þ
k , we calculated the Kuramoto order parameter defined as

RðtÞ ¼ 1
N

�����X
k¼1

N

eiϕ
ð⋅Þ
k ðtÞ
�����

where for all models k ¼ 1;…;N. That is, we only used the excitatory phases to calculate RðtÞ. In analogy with the procedure for empirical data discussed
in Daffertshofer et al. (2018), we z-scored the RðtÞ time series, such that differences in scaling behavior could not be attributed to differences in the
stationary statistics of the RðtÞ time series. We resampled RðtÞ to 250Hz to match the sampling frequency of the data as well as to obtain an equally
spaced time axis necessary for the detrended fluctuation analysis (DFA) (Peng et al., 1994) used to characterize the RðtÞ autocorrelation structure. To
assess the presence of scale-free autocorrelations in RðtÞ, we used a modified version of the conventional DFA procedure. We shortly summarize this
below; for a detailed explanation we refer to Ton and Daffertshofer (2016).

In line with the outline around Eq. (8), consider (the cumulative sum of) a time series YðtÞ, t ¼ 1;…;N that is divided into N=n non-overlapping
segments YiðtÞ of length n with t ¼ 1;…; n. Upon removing the linear trend Y trend

i ðtÞ in segment i, the fluctuations FiðnÞ corresponding to window
length n are given by
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FiðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Xn �

YiðtÞ � Y trend
i ðtÞ�2s
n t¼1

In the conventional DFA procedure one calculates the average fluctuation magnitudes

FiðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N=n

X
i¼1

⌊N=n⌋

F2
i ðnÞ

vuut :

We regarded the Fi as a set of ⌊N=n⌋ realizations of the ‘stochastic’ variable Fi and determined its probability density pnðFiÞ. When these fluctuations
scale as a power law, i.e. Fiðn⋅cÞ ¼ nαFiðcÞ, we find that logðFiðn⋅cÞÞ ¼ αlogðnÞþ logðFiðcÞÞ. Hence, under a transformation to logarithmic coordinates ~n ¼
logðnÞ, eFi ¼ logðFiÞ a power law appears as a linear relationship. To identify whether power-law scaling was present we fitted a set of candidate models
fθð~nÞ parametrized by the set θ. The linear model corresponding to power-law scaling was contained in this set, such that we could compare it against
alternatives. For this comparison we defined the log-likelihood function as

lnðL ðθjfθÞÞ ¼ ln

 Y
n

~pnðfθÞ
!

¼
X
n

lnð~pnðfθÞÞ : (A.1)

where ~pn denotes the probability density pn transformed to the double logarithmic coordinate system. In (A.1) one evaluates for each n the probability
density ~p at model value fθð~nÞ and defines the likelihood function as its product. The purpose of calculating L was to be able to use of the Bayesian
Information criterion (BIC) defined as

BIC ¼ �2lnðL maxÞ þ klnðMÞ (A.2)

to compare different models fθ. In (A.2)M denotes the number of different interval sizes n, k the number of parameters in the model (the size of the set θ)

and L max the maximized likelihood with respect to a particular model f ð⋅Þθ . The model resulting in a minimal value of the BIC compared to alternative
models was considered to be the optimal model; providing the optimal compromise between goodness-of-fit and parsimony (Burnham and Anderson,
2002). The set of candidate models was given by a combination of polynomial forms including the sought-for linear model. We further included an
alternative exponential model fit as well as the form resulting from an Ornstein-Uhlenbeck process and, last but not least, a piece-wise linear model:

f 1θ ðxÞ ¼ θ1 þ θ2x

f 2θ ðxÞ ¼ θ1 þ θ2x2

f 3θ ðxÞ ¼ θ1 þ θ2xþ θ3x2

f 4θ ðxÞ ¼ θ1 þ θ2x3

f 5θ ðxÞ ¼ θ1 þ θ2xþ θ3x3

f 6θ ðxÞ ¼ θ1 þ θ2x2 þ θ3x3

f 7θ ðxÞ ¼ θ1 þ θ2xþ θ3x2 þ θ4x3

f 8θ ðxÞ ¼ θ1 þ θ2eθ3x

f 9θ ðxÞ ¼ θ1 þ 1
lnð10Þ ln



θ1


1� e�θ2elnð10Þx

��
f 10θ ðxÞ ¼

(
θ1 þ θ2x x � θ4

C þ θ3x x > θ4
with C ¼ θ1 þ ðθ2 � θ3Þθ4 :

(A.3)

The scaling exponent αwas determined as the slope of the linear relationship fθ, i.e. α ¼ θ2 in f 1θ ðxÞ. When reportingmean α values, we only use those
α values obtained in realizations for which the BIC indicated power-law scaling. We also calculated the finite-size corrected Akaike information criterion
AICc ¼ �2lnL max þ 2kþ 2kðkþ1Þ

M�k�1 which led to similar results (not shown). We determined Fi for the range of interval sizes n¼ [10, N=10], where N
denotes the length of the time series, here amounting to 300⋅250 ¼ 7:5⋅104 samples.

Appendix B. Derivation of the phase dynamics

Appendix B.1. Wilson-Cowan phase dynamics

The first model was derived from the Wilson-Cowan firing rate model in a regime where it displayed self-sustained oscillations. With Ek and Ik
denoting firing rates of the excitatory and inhibitory populations, respectively, the dynamics read (Wilson and Cowan, 1972; Daffertshofer and van
Wijk, 2011):

μk _Ek ¼ �Ek þ Q

"
aE

 
cEEEk � cEI Ik � θE þ qk þ K

X
l¼1

N

SklElðt � τklÞ
!#

μk _Ik ¼ �Ik þ Q ½aIðcIEEk � cII Ik � θIÞ�:
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Here μk represents the neuronal membrane time constant, which slightly differed through k to introduce heterogeneity in the individual mass
dynamics. The average value hμki ¼ 0:15 was chosen such that the characteristic oscillation frequency denoted by Ω fell in the alpha frequency band.
The parameters cEI ; cIE denote coupling between the inhibitory and excitatory units within pair k with cEE; cII indicating self-coupling within Ek and Ik
respectively. The matrix Skl is a normalized DTI derived structural connectivity matrix describing the coupling between excitatory units in the network.
It is scaled by overall coupling strength K. The parameter qk is an external input to node k. The sum of all input contributions is integrated in time when it
exceeds the threshold θE ;θI . This integration is performed through the sigmoid function Q ½x�. Note that both the external inputs qk and the contributions
from the rest of the network mediated by Skl only act on the excitatory units, such that inhibitory feedback is only present locally (within pair k).

In deriving the phase dynamics of the Wilson-Cowan network we considered deviations from the fixed points Eð0Þ
k , Ið0Þk , that is Ek ¼ Eð0Þ

k þ δEk and

Ik ¼ Ið0Þk þ δIk. Upon inserting this in (1) and combining this with the Taylor expansion for Q

Q
�
xð0Þ þ δx

� ¼ Q
�
xð0Þ
�þX

n¼1

M 1
n!
Q ðnÞ�xð0Þ�ðδxÞn (B.1)

we obtain for the dynamics of the deviations, after restricting ourselves to n ¼ 1:

μk _δEk ¼ �δEkðtÞ þ Q 0
h
χð0ÞE;k

i 
aE

 
cEEδEk � cEIδIk þ K

X
l¼1

N

SklδElðt � τklÞ
!!

μk _δIk ¼ �δIkðtÞ þ Q 0
h
χð0ÞI;k

i
ðaIðcIEδEk � cIIδIkÞÞ

(B.2)

with

χð0ÞE;k ¼ aE

 
cEEE

ð0Þ
k � cEI I

ð0Þ
k � θE þ qk þ K

X
l¼1

N

SklE
ð0Þ
l

!

χð0ÞI;k ¼ aI


cIEE

ð0Þ
k � cII I

ð0Þ
k � θI

�
Here the prime in Q ' denotes the first derivative of Q . By assuming oscillatory behavior close to the Hopf bifurcation point, which we guaranteed by

an appropriate choice of parameter values, we could transform the system into Jordan real form and subsequently define polar coordinates: δEkðtÞ ¼
AkcosðΩt þ ϕkÞ and δIkðtÞ ¼ AksinðΩtþ ϕkÞ. To derive the phase dynamics _ϕk we employed a combination of a slowly varying wave approximation and
slowly varying amplitude approximation (Haken, 2004), or in brief averaging (Guckenheimer and Holmes, 2013). As discussed in Daffertshofer and van
Wijk (2011), Ton et al. (2014) this boils down to identifying two distinct time scales in the system: the oscillations with characteristic frequency Ω and
the much slower dynamics of ϕk. By this separation we could average over one period of the fast oscillations and only retain the slow dynamics _ϕk. For a
detailed derivation we refer to Daffertshofer and van Wijk (2011), here we suffice with stating that the above approximations yielded equation (4)
combined with (5). Note that from the corresponding Jacobian

Jk ¼
 �1þ Q '

h
χð0ÞE;k

i
aEcEE �Q '

h
χð0ÞE;k

i
aEcEI

Q '
h
χð0ÞI;k

i
aIcIE �1� Q '

h
χð0ÞI;k

i
aIcII

!

we derived

ϖk ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðtrfJkgÞ2 � 4detfJkg

�q
and

Λk ¼
h
Q 0
h
χð0ÞE;k

i
aEcEE þ Q 0

h
χð0ÞI;k

i
aIcII

i.
ϖk :

Due to the first order firing rate dynamics for each node, the phase dynamics (4)/(5) and in particular the matrix DWC
kl is N � N with N the number of

excitatory populations. Hence, the structural connectivity matrix Skl and DWC
kl have equal dimensions.

Parameter values were chosen in such a way that the neural mass network (3) displayed alpha band oscillations and amounted to aE ¼ 1, aI ¼ 1,
cII ¼ � 2, cIE ¼ cEE ¼ cEI ¼ 10, θE ¼ 2, θI ¼ 4:5, qk 2 ½�0:15;0:15� and μk 2 ½0:125;0:175� where the latter two were randomly chosen to introduce
heterogeneity in oscillation frequencies throughout the network.
Appendix B.2. Freeman phase dynamics

The other neural mass network that served as a basis for a phase reduction was a network of neural masses introduced by Freeman (1975), describing
the dynamics of mean membrane potentials of neural populations as

€Vk ¼ �ðαk þ βkÞ _Vk � αkβkVk þ αkβkqþ αkβkγ
X
l¼1

N

CF
kl

�
Q
�
Vlðt � τklÞ � θ

σ

��
;

where k ¼ 1;…;2N. The parameters αk and βk represent mean rise and decay times of neural responses in population k. Before weighted by the coupling
437



A. Daffertshofer et al. NeuroImage 180 (2018) 428–441
matrix CF
kl ¼

�
K⋅S �cEI I
cIEI 0

�
, see Fig. 2, the delayed signals Vlðt � τklÞ are thresholded by the sigmoid function Q ½⋅�. This function covers the lump sum

effect of pulse coupled neurons l (Freeman, 1975; David et al., 2006), where the fraction in its argument may be interpreted as the cumulative dis-
tribution function of the normal distribution N ðV � θ; σ2Þ of the firing thresholds θ across the population. In (3) it is additionally scaled by a factor σ
(Marreiros et al., 2008) to guarantee self-sustained oscillations.

To derive the expressions covering the phase dynamics of the Freeman neural mass network we used a very similar procedure as for the Wilson-
Cowan model above. To this end we first re-cast the system (3) as a system of two first-order equations

_Vk ¼ Uk

_Uk ¼ �ðαk þ βkÞUk � αkβkVk þ αkβkqþ αkβkγ
X
l¼1

N

CF
kl

�
Q

�
Vlðt � τklÞ � θ

σ

�� (B.3)

Analogous to the derivation of the Wilson-Cowan model we considered the dynamics of the deviations from the fixed points V ð0Þ
k ;Uð0Þ

k together with
the Taylor expansion of Q ½⋅� given by (B.1) yielding

_δVk ¼ δUk

_δUk ¼ �ðαk þ βkÞδUk � αkβkδVk þ αkβkqk þ αkβkγK
X
l¼1

N

CF
kl

"
Q '

"
V ð0Þ
l � θ

σ

#
δVlðtÞ

#
(B.4)

These expressions can be considered equivalent to (B.2) and the subsequent procedure to obtain the phase dynamics also goes along the same lines.
Thus by transforming ½δVk; δUk�→½AkcosðΩt þ ϕkÞ �ΩAksinðΩt þ ϕkÞ� and by applying the same approximations as in the derivation of the Wilson-
Cowan phase dynamics, the phase dynamics for the Freeman model yielded the expressions given in (4) and (6). For a more detailed derivation we
refer to Ton et al. (2014). For this model the parameter values amounted to cEI ¼ cIE ¼ 1, cEE ¼ cII ¼ 0, qk ¼ 20, θ ¼ 15, γ ¼ 250, αk 2 ½60; 80� and
βk 2 ½165; 185�. The parameters αk, βk were chosen randomly to introduce heterogeneity in the oscillation frequency in the network. Values were chosen
such that self-sustained oscillations in the alpha band were guaranteed.
Appendix B.3. A note on the phase reduction of neural mass models

The reduction of high-dimensional and complex neuronal networks into phase oscillator networks is a field of ongoing theoretical research, see, e.g.,
(Ashwin et al., 2016; Hoppensteadt and Izhikevich, 1997; Ermentrout and Terman, 2010), but satisfactory answers that are both simple and at the same
time mathematically sound are still sought after. The here presented method combining a slowly varying wave and slowly varying amplitude approximation
(Haken, 2004), or in brief averaging (Guckenheimer and Holmes, 2013), clearly stands out for its direct transformation of the original parameters in the
physiologically realistic neural mass models into the corresponding phase oscillator parameters. Using appropriate polar coordinates, the complex
oscillatory dynamics of the underlying neural mass model is cast into a Kuramoto-Sakaguchi phasemodel. This reduction into the Kuramotomodel (4) is
inherent to our method, and does not need any heuristic argumentation why particular terms of the Fourier expansion can be discarded as in Schuster
and Wagner (1990), Sadilek and Thurner (2015). The question that naturally arises is whether our phase reduction approach indeed captures a holistic
picture of the true phase dynamics of the neural mass models.

A single node-specific Wilson-Cowan dynamics combined with the small coupling strengths K < 0:8 considered throughout the article calls for
applying here the theory of weakly coupled neural networks (Hoppensteadt and Izhikevich, 1997). For small qk, two necessary conditions are fulfilled:
First, each uncoupledWilson-Cowan node is near a bifurcation through which oscillations are generated. Second, the coupling is considerably weak. To
be more precise, for qk 	 � 0:35, each oscillator is near a supercritical Hopf bifurcation. With respect to the theory of weakly coupled neural networks,
there is extensive literature on how to phase reduce coupled oscillatory systems, with each one close to a Hopf bifurcation (Schuster and Wagner, 1990;
Hoppensteadt and Izhikevich, 1997; Sadilek and Thurner, 2015; Pietras and Daffertshofer). The reduction is usually achieved in two steps: a center
manifold reduction followed by a phase reduction. Once the dynamics are cast onto the center manifold, leading to the Hopf normal form, phase
reduction techniques aim at estimating the corresponding phase response curves prior to obtaining the actual phase interaction, or coupling function,
which determines the phase dynamics. Interestingly, the method used in our article leads to exactly the same phase dynamics when starting from the
Hopf normal form, see also (Pietras and Daffertshofer). However, properly deriving normal forms is usually a highly non-trivial task, and often cir-
cumvented with heuristic arguments. One method which can be applied straight-forwardly to stable-limit cycle oscillations away from generic bi-
furcations, is based on Malkin's theorem and implemented in Ermentrout's software XPP (Ermentrout, 2002; Pietras and Daffertshofer). A more
thorough investigation contrasting different phase reduction techniques will be published elsewhere (Pietras and Daffertshofer). Here we note that
while numerical phase reduction techniques can serve as a good reference to test for the validity of the parameterized phase models, their numerical
strength also comes with the disadvantage that no proper mapping from the parameters of the original model into those of the phase reduced model is
available. Indeed, for small qk near the Hopf bifurcation, we numerically found the coupling term to have a negligible cosine component in the
non-delayed system – in good agreement with our reduction method, cf. (5).

All these considerations also apply to the Freeman neural mass model (3). Henceforth, we believe that up to now our method appears to be the best
compromise that maps the physiologically realistic parameters in the Freeman model into an appropriate phase model.

Appendix C. A slightly alternative model

We expected the Wilson-Cowan model and the Freeman model to resemble similar synchronization behavior, because in our structural connectivity
matrix the inhibitory connections were rather sparse compared to excitatory ones (Fig. 2). To test this, we considered an alternative: a Freeman model
(FE) that only comprised the excitatory part DF

kl, i.e. the left upper block of this matrix.
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Fig. C.1. a: PðsimÞ-PðMEGÞ correlations values for the FE model as function of coupling and delay. Fig. C.1b: Scaling exponent results. Fig. C.1c: Similar to Fig. 5; solid
lines correspond to hRðtÞi values, dashed lines to hPðsimÞi. Surrogate values are not displayed, but coincide with those displayed in Fig. 5. As usual, the delay values hτkli
are in milliseconds.

The resemblance of the Freeman phase dynamics with a repulsively coupled network was confirmed by the FE model results. Fig. C.1 shows that the
behavior of the FE model largely agreed with the Freeman phase model, despite the lack of inhibitory connections. Functional connectivity correlations
with data were very similar in both models, as can be appreciated by comparing Fig. C.1a and Fig. 4, with maximal correlations of ρ ¼ 0:56 for K ¼ 0:8
and hτkli ¼ 9:4 in both models. The FE model also yielded scale-free autocorrelations in the phase synchronization dynamics (Fig. C.1b). The average
scaling exponent was α ¼ 0:56� 0:02, which was almost equal to the Freeman phase model result. Again this was significantly different from surrogate
values (p < 10�4). The hPðsimÞi and hRðtÞi results in the FE model largely agreed with the Freeman model results as well. In particular, the FE model
dynamics resulted in a spatially desynchronized network with, again, hRðtÞi significantly below surrogate values (p < 10�4); see Fig. C.1c.

Similar to the strong coupling case in the main text, the direct connection of the FE model with the underlying neural mass dynamics (3) was blurred
by ignoring the inhibitory nodes. The results suggest, however, that the origin of the scale-free correlation structure displayed by the Freeman phase
model is, in general, caused by nature of the coupling between the excitatory units. Its dynamics can thus be understood by considering the phase
dynamics (4)/(6) as a repulsively coupled Kuramoto network.
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Appendix D. Correlating functional and structural connectivity

We computed the correlation between PðsimÞ
kl and Skl to show that both models generated functional connectivity structures that were highly

correlated with Skl; see Fig. D.1.
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Fig. D.1. a: Pearson correlation values between the PS and Skl matrices for the Wilson-Cowan phase model as function of coupling strength K and mean delay hτkli (in
milliseconds). The colors code the correlation values and correspond to the colorbar at the right. Fig. D.1b: Similar to Fig. D.1a but for the Freeman phase dynamics.
Correlation values were averaged over ten realizations for each parameter combination. Note the similarity of this figure with Fig. 4 suggesting that the reflection of Skl
is an important determinant in high functional connectivity correlations, cf. (Robinson, 2012).
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