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a b s t r a c t

Investigating the dynamics of a network of oscillatory systems is a timely and urgent
topic. Phase synchronization has proven paradigmatic to study emergent collective
behavior within a network. Defining the phase dynamics, however, is not a trivial
task. The literature provides an arsenal of solutions, but results are scattered and
their formulation is far from standardized. Here, we present, in a unified language, a
catalogue of popular techniques for deriving the phase dynamics of coupled oscillators.
Traditionally, approaches to phase reduction address the (weakly) perturbed dynamics
of an oscillator. They fall into three classes. (i) Many phase reduction techniques start off
with a Hopf normal form description, thereby providing mathematical rigor. There, the
caveat is to first derive the proper normal form. We explicate several ways to do that,
both analytically and (semi-)numerically. (ii) Other analytic techniques capitalize on time
scale separation and/or averaging over cyclic variables. While appealing for their more
intuitive implementation, they often lack accuracy. (iii) Direct numerical approaches help
to identify oscillatory behavior but may limit an overarching view how the reduced
phase dynamics depends on model parameters. After illustrating and reviewing the
necessary mathematical details for single oscillators, we turn to networks of coupled
oscillators as the central issue of this report. We show in detail how the concepts of
phase reduction for single oscillators can be extended and applied to oscillator networks.
Again, we distinguish between numerical and analytic phase reduction techniques.
As the latter dwell on a network normal form, we also discuss associated reduction
methods. To illustrate benefits and pitfalls of the different phase reduction techniques,
we apply them point-by-point to two classic examples: networks of Brusselators and a
more elaborate model of coupled Wilson–Cowan oscillators. The reduction of complex
oscillatory systems is crucial for numerical analyses but more so for analytical estimates
and model prediction. The most common reduction is towards phase oscillator networks
that have proven successful in describing not only the transition between incoherence
and global synchronization, but also in predicting the existence of less trivial network
states. Many of these predictions have been confirmed in experiments. As we show,
however, the phase dynamics depends to large extent on the employed phase reduction
technique. In view of current and future trends, we also provide an overview of various
methods for augmented phase reduction as well as for phase–amplitude reduction. We
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indicate how these techniques can be extended to oscillator networks and, hence, may
allow for an improved derivation of the phase dynamics of coupled oscillators.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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N Set of positive integers
R Set of real numbers
C Set of complex numbers
S1

= T Circle of all phases [0, 2π )
x, x, y Real-valued state variable (non bold-face = scalar)
z Complex-valued state variable
X ⊂ Rn State space
n ∈ N Dimension of state space
F Vector field
φ Flow
f , f Nonlinear function prescribing the internal dynamics (non bold-face = scalar)
g, g Nonlinear coupling function (non bold-face = scalar)
L Jacobian matrix
J Diagonalized Jacobian
λ = ϱ + iω Eigenvalues of the Jacobian
µ Bifurcation parameter



4 B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105

κ Coupling strength
p Perturbation
t Time
τ Slow time
C Limit cycle
xc, xc, yc State variable on the limit cycle
θ c Phase on the limit cycle
Rk Amplitude of oscillation (radius of the limit cycle)
ρk, rk Amplitude (distance to the limit cycle)
B Basin of attraction
I Isochron
Θ:X → S1 (Asymptotic) phase map
θ Phase
ψ Phase difference
ω Natural frequency
g(ω) Natural frequency distribution
T Period
Q: S1

→ R Infinitesimal phase response curve
G: S1

× Rn
→ R Phase response function

Z: S1
→ Rn Phase sensitivity function in n real dimensions

Z: S1
→ C Phase sensitivity function in one complex dimension

H Phase interaction function
an, bn Amplitudes of phase interaction function
C = {Cjk}j,k Adjacency matrix, where j, k = 1, . . . ,N
N ∈ N Network size
R Kuramoto order parameter (real-valued)
Ψ Mean phase
w ∈ C Normal form variable
M ∈ N Order of normal form
σm = um + ivm Coefficients of Hopf normal form
α, β, γ , δ ∈ C Coefficients of the Hopf normal form of an oscillator network
λintra, λinter Eigenvalue associated with intra-, intercluster perturbations
In, Idn Identity matrix in Rn×n

z̄ Complex conjugate of complex-valued variable z
⟨ · ⟩ Temporal average (over one period)
⟨· , ·⟩ Inner product on Rn, also used in dot-notation
[· , ·] Lie bracket
S1 Rotation group on CN

SN Permutation group on CN

L Linear operator

1. Introduction

Oscillatory behavior of complex networks abounds on all scales. Examples range from pendulum clocks [1] to
the interaction between organ pipes [2], from electronic circuits [3] and coupled Josephson junctions [4] to cardiac
pacemakers [5] and circadian rhythms [6], from flashing fireflies [7], animal flocking [8], and fish schooling [9] to rhythmic
applause [10] and the behavior in social networks [11], from chemical oscillations [12] over biological oscillations [13] to
neural oscillations in the human brain [14–17]. Over the years, mesoscopic and macroscopic models have been designed
and developed that describe different kinds of interactions between oscillatory systems. Understanding the collective
behavior in complex networks and how interaction gives rise to emergent phenomena is as always an urgent topic at the
frontiers of all of science, from neurobiology to statistical physics.

Exploring complex networks is an inherently difficult task. The complexity of a network emanates from its structure
and its dynamics. The interplay between structural and dynamical complexity complicates an accessible characterization
of (the state of) a network. On top of that, the structure, or topology, of a network may change dynamically, adding further
to its complexity. But already for a static and non-evolving topology, the dynamics on complex networks may be all but
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trivial. The crucial question from a nonlinear dynamics point of view is: how will a network of interacting dynamical
systems behave collectively, given the individual (nodal) dynamics and the coupling structure? In this report, we focus
on describing, characterizing, and predicting the collective behavior of complex networks whose individual nodes exhibit
oscillatory dynamics.

Among the mechanisms that lead to emergent collective dynamics, synchronization certainly plays a major role. The
large-scale organization of a complex network occurs as pairs or groups of nodes synchronize their individual dynamics
[18–25]. For complex networks of coupled oscillators, the concept of phase synchronization has become a paradigm
to investigate emergent collective phenomena. The phase dynamics of interacting oscillators are indicative for their
synchronization behavior. At the same time, the notion of phase allows for a direct and unique identification of the state
of a presumably high-dimensional oscillator in terms of a one-dimensional variable, thus facilitating an analytic approach
to the dynamics of complex networks.

Phase synchronization is believed crucial for information processing and information transfer in networks, especially
in the human brain [26–31]. A vast amount of literature accumulated about modeling synchronization phenomena of
cortical oscillations using network models of phase oscillators [32–40]. The brain is but one field of application for complex
networks of coupled phase oscillators. Dörfler and Bullo [41] provided an extensive survey of how phase models have
found their way into various other areas relevant in both sciences and engineering; they focused on control systems such
as vehicle coordination, electric power networks, and clock synchronization in decentralized networks. The success of the
seminal Kuramoto model [12,42–45] underlines the popularity of coupled phase oscillator models across fields.

We will highlight how such Kuramoto-like networks of coupled phase oscillators can be derived from complex
oscillator networks. A mathematically rigorous derivation from the underlying dynamics to an accurate phase model can
be laborious. For this reason, it is tempting to introduce phase models based on heuristic arguments rather than through
rigorous mathematics. By avoiding a careful derivation, however, the phase description of the oscillatory dynamics is,
strictly speaking, bereft of its fundamental basis, and the link from the actual dynamics to the phase model may be
spurious, rendering the validity of the latter questionable. We advocate a mathematically rigorous phase reduction. It can
add to the significance of the network analysis and, more importantly, to its impact in the scientific world.

Phase reduction has traditionally been applied to oscillators subject to (weak) perturbations, e.g., from external sources
or through coupling to other oscillators. Describing every oscillator of a network by its associated phase dynamics allows
for assessing the collective dynamics in terms of their phase relationships. Phase reduction, however, is arbitrarily more
intricate when deriving the phase dynamics of multiple oscillators simultaneously, as in the case of an oscillator network.
The literature about phase reduction of coupled oscillators is vast but scattered. As of yet, there is no comprehensive
formulation of different approaches and their respective methodologies. Here, we provide an overview over different
mathematically sound techniques for the phase reduction of oscillator networks. Using a unified language, we prepare for
an insightful comparison between reduction techniques and complement them, when missing, with mathematical proofs,
in particular with respect to nonlinear coupling schemes between oscillators. We will guide the reader along different
ways how to distill the phase dynamics of oscillator networks and determine their (phase) synchronization properties.
By this, we hope to offer an accessible approach to complex networks of coupled oscillators.

Weakly coupled oscillators

Recorded signals from oscillator networks often stand out for their dynamical richness, which is typically manifested
in non-trivial or complex macroscopic dynamics. In networks with a given connectivity structure, macroscopic complexity
emerges through an interplay of the activity of individual nodes. The interaction between the nodes can hence be
considered crucial for the complexity of the network as a whole. To provide a dynamical account of this macroscopic
behavior, one typically introduces phases and amplitudes at every node, even if the precise oscillator dynamics are
unknown. This dynamics might already be very complicated. But if phase–amplitude interactions are negligible at the
nodal level, the respective phase and amplitude dynamics decouple from one another. Then, it suffices to focus on the
first and the macroscopic network dynamics can eventually be expressed in terms of nodal phases only. The separation
of phase and amplitude dynamics at the nodal level is a typical characteristic of weakly connected networks, or, more
specific, weakly coupled oscillators. The attribute ‘weak’ implies that at every node, perturbations through external forcing
or internal coupling are sufficiently small when compared to the size of the state variable of the unperturbed, single-
node dynamics. Large perturbations may induce a qualitative change in the network dynamics beyond mere quantitative
adjustments. Weak perturbations allow an oscillator to asymptotically return to its state prior to the perturbation. Put
differently, there is a critical strength of perturbation at which the network undergoes a transition from one macroscopic
behavior to a qualitatively distinct macroscopic behavior. This critical value is arguably reached whenever a bifurcation
in the dynamics occurs in, at least, one of the nodes. Then, dynamical systems theory does no longer allow for describing
the node evolution by linear approximation. We will hence assume that this critical perturbation strength will not be
exceeded through the coupling with other nodes. That is, the oscillators are weakly coupled.

For illustration, we sketch a network of five weakly coupled oscillators in Fig. 1.1. Every node shows oscillatory behavior
in the two-dimensional state variables xk = (xk, yk) ∈ R2, k = 1, . . . , 5. For each of the five nodes, we find a closed orbit,
the limit cycle (depicted in blue), which describes the nodal dynamics in the absence of coupling. The weak coupling
between the oscillators will ‘kick’ the dynamics away from the closed orbit, but only so far that the convergence toward
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Fig. 1.1. A network of weakly coupled planar limit cycle oscillators. Each oscillator k = 1, . . . ,N = 5, is described in the two-dimensional state
variables xk = (xk, yk). The coupling between oscillators is indicated by red arrows. Without coupling, each oscillator follows the blue limit-cycle
trajectory. Upon perturbation, the oscillator will be kicked away from the limit cycle and follows a trajectory that leads exponentially fast towards
the globally attracting limit cycle. Globally attracting implies that the basin of attraction spans the whole x–y plane except for the unstable origin
(red). Two trajectories from within the basin of attraction are shown in black.

it is sufficiently fast (see the two exemplary trajectories in black within the limit cycle). This allows for identifying the
state of each oscillator xk with a circular variable, the phase θk ∈ S1. Deriving the dynamics θ̇k of the phase variables from
the network dynamics ẋk is central to this report. Given the phase dynamics θ̇k, we can infer the collective behavior of
the full network by means of the nodes’ phase synchronization.

Throughout this report, we will stay within the framework of weakly coupled oscillators. We briefly sketch why this is
beneficial for a concise presentation of the theory, and will properly introduce all required definitions later at due time.
The governing dynamics of a network of N ≫ 1 interacting oscillators shall be of the form

ẋk = f k(xk;µk) + κgk (x1, x2, . . . , xN) , k = 1, . . . ,N. (1.1)

The functions f k determine the node-specific and uncoupled dynamics, whereas gk comprises all coupling effects on
oscillator xk through the other nodes xj̸=k. The coupling strength is denoted by κ ∈ R and µk are bifurcation parameters.
We guarantee weak coupling by assuming the coupling strength to be sufficiently small, κ ≪ 1. Furthermore, we assume
that the oscillators are nearly identical and that the coupling structure is pairwise, i.e. the coupling function gk can be
decomposed into the sum of pairwise interactions. Hence, one can rewrite (1.1) as

ẋk = f (xk;µ)+ κ

N∑
j=1

gkj
(
xk, xj

)
(1.2)

with µ being the only bifurcation parameter. Phase reduction implies transforming (1.2) into the phase model

θ̇k = ω + κ

N∑
j=1

Hkj
(
θk − θj

)
, k = 1, . . . ,N. (1.3)

In particular, the state xk of every oscillatory node will be characterized by a phase variable θk. The corresponding phase
dynamics comprises a natural frequency term ω and contributions from the other oscillators. The latter add up by means
of phase interaction functions Hkj that depend on the pairwise phase differences θk − θj of oscillators k and j. As we will
show, the shape of Hkj is decisive for the collective behavior. It is hence crucial to derive the phase interaction function
between oscillators with great precision. We will elaborate on derivations of the phase dynamics (1.3) from the network
dynamics (1.2). Moreover, we will characterize collective behavior of complex networks by means of phase dynamics.
By this, we can ultimately bridge the gap between the dynamics of individual nodes and the emergent synchronization
phenomena of interacting oscillators with a given coupling structure.

Phase reductions and weakly coupled oscillators

There already exists abundant literature covering approaches to phase reduction. To name but a few, the textbooks
by Hoppensteadt and Izhikevich [46], Izhikevich [47] and Ermentrout and Terman [48] provide thorough mathematical
concepts to discuss the dynamics of coupled oscillators in terms of their phases. Yet, it seems that conceptual misun-
derstandings still prevail when phase reduction is employed to explain observed macroscopic dynamics of an oscillatory
network given the underlying micro- and mesoscopic dynamics at the network’s nodes. We seek to pinpoint frequent
caveats and highlight sensitive issues in the derivation of phase models from both an analytic and numerical point of
view. In the following, we will review the details of the most commonly used reduction techniques in a unified language.
Subsequently, we will compare their outcomes using two classic examples from the fields where phase reduction was
introduced and applied originally: coupled chemical oscillators [12,49–51] and coupled neural oscillators [52–64]; cf. also
the review by Schwemmer and Lewis [65] as the introductory chapter to a collection of articles on applications of phase
reduction and phase response analysis for neural networks [66]. Specifically, we will consider networks of Brusselators
and coupled Wilson–Cowan oscillators.
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The Brusselator is an exemplary chemical oscillator and one of the most discussed reaction–diffusion systems [67].
This excitable system displays a broad spectrum of complex phenomena. Despite its rich dynamical behavior, the model
is comparably ‘easy’ to analyze given its polynomial form. As such, the Brusselator serves perfectly to illustrate the benefits
and pitfalls of the different phase reduction techniques. The Wilson–Cowan neural mass model [68,69] can be considered a
raw model introducing biophysical realism in macroscopic neural dynamics. Its archetypical form has also been applied to
model, e.g., gene networks, see [70]. As such, it may be seen as a universal and representative nonlinear model exhibiting
complex oscillatory dynamics across disciplines. While the Wilson–Cowan model is often believed to ‘just’ resemble the
Kuramoto model [32,39], we will show that, due to its higher-order nonlinearities, it is a challenge to properly define the
corresponding phase dynamics.

Analytic and numerical phase reduction techniques

The different approaches to phase reduction can broadly be classified as analytic and numerical reduction techniques.
By and large, numerical approaches tend to approximate the actual phase dynamics better. However, computations rely
on software implementations and the relation between the parameters in the underlying oscillator model and those in
the resulting phase model may remain unclear. In contrast, analytic approaches can provide a rigorous representation
of the model parameters in the reduced phase dynamics. They usually capitalize on generic normal forms in order to
extract meaningful phases. It is, hence, essential to first rewrite the dynamics of nonlinear oscillators in a particular
dynamic regime in the desired form. We thus complement our report with a review of normal form and center manifold
reductions. An immediate and important question, however, arises about the validity of reduced phase models. A useful
phase model should provide proper predictions about the network behavior of the underlying model of coupled oscillators.
However, and to anticipate our main finding, different phase reduction techniques do not necessarily yield consistent
results. While the reduced phase dynamics may differ only quantitatively in some parameter regions, e.g., in close vicinity
to a bifurcation boundary, for other parameters these quantitative differences can become large and lead to qualitatively
different predictions. Here, we strive for providing instructive answers as to which reduction techniques perform more
adequately to describe the macroscopic properties of the network dynamics. In any case, phase reduction techniques
always have to be applied with great care, and their choice crucially depends on the particular parameter region and
dynamical regime as well as on the targeted macroscopic observable. After a brief historical note, we begin with the
phase description of a single oscillator and show how the phase dynamics can be derived. Subsequently, we will extend
these ideas to oscillator networks and explicate the various phase reduction techniques.

A historical note

Algorithms to derive the phase dynamics of coupled nonlinear oscillators and their phase interaction function have
independently been introduced by Ioel Gil’evich Malkin [46,71,72], by John C. Neu [49–51] and by Bard Ermentrout and
Nancy Kopell [53–55]. When implemented numerically, they can be applied to the underlying oscillatory dynamics in a
straightforward way. First analytic considerations to determine the phase dynamics of a perturbed nonlinear oscillator
go back to Arthur Winfree [73] and Yoshiki Kuramoto [12]. The idea is to distill the characterizing properties of the
oscillator in terms of their phase response and thereby tie the effect of the perturbation (e.g., through coupling to
another oscillator) to the current state of the oscillator in phase space. Two prevailing analytic techniques of phase
reduction are based on the concepts of isochrons and Floquet eigenvectors, respectively. Another analytic technique has
been promoted by Peter Ashwin and Ana Rodrigues [74]. It allows to directly deduce the phase model of an oscillator
network and is therefore worth being compared against. Building upon equivariant normal form theory, however, it
dwells on specific symmetry properties of the network. In order to derive the phase dynamics analytically, it is thus
crucial that the underlying oscillatory dynamics have a generic form, a so-called normal form. This can be achieved via
center manifold and normal form reductions [75–80]. The oscillations are required to be close to a bifurcation, that is,
they can be thought to have emerged via this bifurcation. Seminal for this is a supercritical Hopf bifurcation, where the
dynamics can be transformed into an Andronov–Hopf oscillator, also known as a Stuart–Landau oscillator. In fact, there are
different methods to obtain the Hopf normal form. We focus on three analytic techniques: a perturbation-based approach
introduced by Kuramoto [12], a normal form reduction via nonlinear transforms going back to Henri Poincaré [81] that
has been popularized by Yuri A. Kuznetsov [82], and an algebraic approach based on the ideas of Poincaré and Floris
Takens [81,83,84].

Normal form reduction is a prerequisite for analytic phase reductions. We will consequently refer to analytic phase
reduction techniques as the two-step approaches that retrieve the phase dynamics analytically from the underlying
oscillatory dynamics via an intermediate transformation in Hopf normal form. As an alternative to the more elaborate
reduction techniques that include normal forms, a more traditional technique is worth of note which dwells on
averaging [75,85]. Hermann Haken popularized the combination of a rotating wave approximation and a slowly varying
amplitude approximation [86–88], which originally turned out particularly useful in the physics of nonlinear optics, for
characterizing the phase dynamics of complex oscillatory networks.
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Fig. 2.1. An uncoupled planar limit cycle oscillator. (a) The two-dimensional state variable xk = (xk, yk) follows a closed periodic orbit in the x–y
plane, the oscillator’s limit cycle. (b) The state variables xk(t) = xk(t + T ) and yk(t) = yk(t + T ) are periodic in time. (c) The corresponding phase θ
of the oscillator increases monotonically between 0 and 2π during one period T . We choose a reference point on the limit cycle where the value
of yk is maximal, see the dashed lines in (a) and (b). Whenever the oscillatory crosses this point, the phase is reset to θ = 0.

Outline

We will start with the phase dynamics of a single oscillator and introduce all definitions necessary for an adequate
phase description of oscillatory dynamics in Section 2. In Section 3, we present the commonly used phase reduction
techniques. As analytic phase reduction techniques crucially rely on generic forms of the underlying dynamics, we
highlight the link between phase reductions and normal forms in Section 4. Particular emphasis lies on Hopf normal
forms and their reduction. We complement the section with an exemplary application of the previously presented phase
reduction techniques to a single oscillator in Hopf normal form.

Next, we address phase reduction of complex oscillatory networks. After a brief introduction to networks of coupled
oscillators, Section 5 is devoted to a comprehensive description of oscillator networks in terms of phase variables.
We outline how collective behavior of oscillator networks can be characterized and assessed in form of their phase
synchronization properties. In Section 6, we extend the phase reduction techniques for a single oscillator to networks
of coupled oscillators. Malkin’s Theorem plays a key role here and deserves its own sub-section. We explicitly distinguish
between numerical and analytic phase reduction techniques for oscillator networks. Analytic techniques capitalize on a
network Hopf normal form, which we will present and motivate in due course. Moreover, we will illustrate phase reductions
of an oscillator network in Hopf normal form in great detail. In Section 7, we review two reduction techniques of the Hopf
normal form of an oscillator network. These network normal form reductions take up and extend the ideas of Hopf normal
form reductions for individual oscillators, and are essential for analytic phase reduction techniques.

For illustration, we apply the presented phase reduction techniques and compare them along two exemplary network
models. In Section 8, we study weakly coupled Brusselators. Moving from chemical oscillators to neurobiology, we
investigate the phase dynamics of weakly coupled Wilson–Cowan neural masses in Section 9.

Finally, we discuss the main assumptions on phase reduction of complex oscillatory systems in Section 10 and provide
an overview over augmented phase reduction and phase–amplitude reduction methods in a unified language in Section 11.

2. Phase and amplitude description of a single oscillator

Oscillatory dynamics manifests through activity that is periodic in time. Such oscillatory behavior can occur on a
network level, and at the level of the individual nodes. In this Section, we concentrate on a single node that shows
oscillatory activity. To illustrate a single oscillator xk with dynamics in two real dimensions, i.e. xk = (xk, yk) ∈ R2, in
Fig. 2.1 we depict the (blue) closed orbit in the coordinate plane2 spanned by the two state variables xk and yk. In the
absence of coupling or, more general, perturbations, the nodal dynamics will converge towards a stable limit cycle in the
x–y plane. The state variables are periodic in time, xk(t) = xk(t + T ) and yk(t) = yk(t + T ) for some period T > 0. On the
limit cycle, one can introduce a phase θ c = θ c(t) that increases monotonically from 0 to 2π during one period T after
which it is reset to zero. Throughout this Section, the superscript C indicates that the variables are evaluated exactly on
the limit cycle. A perturbation can ‘kick’ the oscillator away from its limit cycle. If the perturbation is weak enough and
the oscillator remains in the so-called basin of attraction of the limit cycle, the oscillator’s trajectory will spiral back into
the limit cycle; see Fig. 2.2 (panel a). As will be shown below, also in this case a monotonically increasing 2π-periodic
phase can be defined that we will denote as θ = θ (t).

Next to the phase, one can define an amplitude variable rk that describes the distance to the limit cycle. Alternatively,
we can describe the amplitude Rk of oscillator k as the (Euclidean) distance to the center of oscillation, which we typically

2 Usually, this coordinate space is called the phase space. In two dimensions, it is also referred to as the phase plane of xk and yk . However, to
avoid confusion between the ‘phase as a state’ and the ‘phase as function of time’, we stick to the notion of coordinate plane. For the same reason
we do not adopt the notion of phase transitions but rather refer to ‘qualitative changes in macroscopic behavior’ to describe the transition from one
dynamical regime of the collective dynamics to another.
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Fig. 2.2. Amplitude and phase description. (a) Two trajectories (black, red) converge to the oscillator’s limit cycle (blue). (b) The amplitudes of
oscillation R2

k = x2k + y2k are the distance from the center. (c) The amplitudes rk = Rc
k − Rk denote the distance from the limit cycle C. (d) The

respective phases θ of the two trajectories coincide for all times t ≥ 0.

set to the origin, such that R2
k = x2k +y2k; see Fig. 2.2 (panel b). While the amplitude of the limit cycle oscillation Rc

k wobbles
steadily around a non-zero value, the amplitude Rk approaches Rc

k after a short transient. Equivalently, the amplitude
variable rk representing the distance to the limit cycle, i.e. rk = Rc

k − Rk, converges to zero as the oscillator reaches the
stable limit cycle; see Fig. 2.2 (panel c). One can convert the amplitude variable rk to the actual amplitude of oscillation
Rk and vice versa. In this report, we will use the distance to the limit cycle rk to describe the amplitude dynamics unless
stated otherwise.

Phase and amplitude descriptions can be extended to oscillatory dynamics in more than two dimensions. If oscillators
approach their respective limit cycles exponentially fast, one can focus solely on the phase dynamics. The different time
scales at which fast amplitudes and rather slow phases evolve allow for time scale separation. If the perturbations are
sufficiently weak so that the oscillators will not be too far off the limit cycle trajectory, the amplitude values will converge
to their asymptotic value in a fraction of a period; cf. Fig. 2.2. In this case, one may consider the amplitudes constant
and approximate them with their asymptotic values. In consequence, one can represent a high-dimensional dynamics at
every node by its one-dimensional phase dynamics only. Of course, this greatly facilitates the study of synchronization
and other complex collective phenomena in oscillator networks. As the phase description is central to our study, we will
first introduce all necessary definitions for establishing an oscillator’s phase dynamics.

2.1. Oscillators, phases & isochrons

The form of oscillators may vary substantially within and between networks under study. To define phases of
oscillators, the underlying dynamics are required to exhibit self-sustaining limit cycle oscillations. We consider a single
oscillator as the dynamical system

ẋ = Fx(x, p;µ) ,
ṗ = Fp(x, p;µ) ,

(2.1)

where the vector x = x(t) ∈ X ⊂ Rn represents the state variables x1, x2, . . . , xn ∈ R that evolve according to a vector
field Fx. This dynamics is subject to perturbations p = p(t) ∈ Rn, whose evolution is governed by a vector field Fp. The
parameter µ ∈ R is a general bifurcation parameter that we will drop in this section whenever possible to ease legibility.
If we consider merely additive perturbations, the first equation in (2.1) reduces to

ẋ = f (x) + κp(t) , (2.2)

where the perturbations are scaled by the parameter κ ∈ R, which is typically considered small. In anticipation of the
network dynamics of coupled oscillators, the external perturbations p are given by the intrinsic network coupling.

Oscillators. If a solution x(t) of (2.1) is periodic in time, x(t) = x(t + T ) for some constant T > 0, then (2.1) describes
oscillatory dynamics. For a given vector field F = (Fx,Fp) one can associate the flow φ(t) determined by F and starting
at some initial state x0 ∈ X with x(t) = φ(t; x0, p). If (2.1) exhibits a stable time-periodic dynamics without external
perturbations, p ≡ 0, then the dynamical system ẋ = Fx(x, 0) = f (x) describes an oscillator and the corresponding flow
will be denoted by x(t) = φ(t; x0).

Limit cycles & basin of attraction. The stable, non-constant, time-periodic solution xc(t) = xc(t+T ) of an oscillator ẋ = f (x)
follows a trajectory along a closed periodic orbit C ⊂ X . This stable periodic orbit is referred to as the oscillator’s limit
cycle. If we choose an initial condition x(t0) = xc0 ∈ c on the limit cycle, then the unperturbed flow φ(t; xc0) will stay on
C for all times t ≥ t0. One can parametrize the limit cycle as the set

C :=
{
xc ∈ X | xc = φ(t; xc0), t ∈ [0, T )

}
. (2.3)
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The smallest positive constant T > 0 such that C in (2.3) is a closed orbit is called the period. The corresponding angular
frequency ω of the oscillator xc will be ω = 2π/T . We always consider the limit cycle C to be hyperbolically stable and
without self-crossings.

A hyperbolically stable limit cycle C attracts all solutions with initial conditions x0 ∈ B in a close vicinity B = B(C)
of C. The maximal open set of these initial points is the basin of attraction. Formally, it can be given by B(C) :=

{x0 ∈ X | limt→∞ dist(φ(t; x0), C) = 0}, where dist(x, C) := infxc∈C ∥x − xc∥2 is the distance from x ∈ X to the set C ⊂ X
in the Euclidean norm ∥·∥2 on Rn.

Phase. The limit cycle C is a one-dimensional manifold in Rn. Every one-dimensional manifold can be parametrized by
a scalar variable. In the case of limit cycle oscillations, the most appropriate variable is a linearly growing phase θ that
results from a smooth bijective phase map Θ: C → S1, where Θ(xc) = θ c . Such a phase-reparametrization of the limit
cycle (2.3) can be achieved by introducing θ = ωt where the frequency ω = 2π/T defines the uniform growth rate. While
in the remainder of the report we solely consider smooth oscillators, we briefly add an approach to tackle the non-smooth
case.

Phase of non-smooth oscillators. Naturally, for limit-cycle oscillations in the x–y plane with the center at the origin, a
general ‘phase’-parameterization of the limit cycle trajectory

(
x(t), y(t)

)
can be achieved by θ̃ (t) = arctan

(
y(t)/x(t)

)
. We

call θ̃ the protophase as it stems from a smooth bijective transformation C → S1, but does not grow uniformly, ˙̃
θ ̸= const .

The concept of protophase can be generalized for limit-cycle oscillators x in arbitrary dimension n > 2 by constructing
a two-dimensional embedding, e.g., by using the Hilbert transform ŷ of a (monotonically increasing) scalar observable
y = f (x) and computing θ̃ = arctan

(
ŷ/y
)
[89,90]. Given the protophase θ̃ , we can eventually compute the (uniformly

increasing) phase θ by

θ = ω

∫ θ̃

0

dθ̃ ′

˙̃
θ (θ ′)

. (2.4)

The protophase is useful to define a phase for non-smooth oscillators. As an example, we consider so-called integrate-
and-fire dynamics: a scalar state variable x monotonically increases according to ẋ = f (x) between two thresholds νr < νf
with f (x) > 0 for x ∈ [νr , νf ]. When reaching the upper (firing) threshold νf , the state will be instantaneously reset to
the lower (reset) threshold νr and start integrating again. In that case, one can define the phase map Θ as the bijective
change of variables [59]

Θ(x): x ↦→ ω

∫ x

νr

1
f (y)

dy , (2.5)

with the threshold values νr and νf mapped to θ = 0 and θ = 2π , respectively. Importantly, (2.5) and (2.4) are of very
similar nature. By identifying θ̃ with the state x on the integrate-and-fire dynamics and setting the zero-phase θ = 0 at
x = νr , we find the phase θ by integrating the inverse of ˙̃

θ = ẋ = f (x) from νr to the actual state.

Asymptotic phase. The notion of phase can be extended to the limit cycle’s basin of attraction B(C). This is an important
statement because it underlies all of the to-be-discussed mathematical descriptions of phase dynamics. We briefly show
that this is true: Without loss of generality, we consider a reference point xc0 of zero phase by putting Θ(xc0) = 0. In
the absence of external perturbations, the phase θ c increases constantly on the limit cycle C. In particular, we have
θ c = Θ

(
φ(t; xc0)

)
= ωt + Θ(xc0) = ωt and θ̇ c = ω. Within the basin of attraction, one can define the unique asymptotic

phase θ of the oscillator x ∈ B(C) as

θ := Θ(x) ∈ [0, 2π ) (2.6)

such that limt→∞ ∥φ(t; x) − φ
(
t;φ(θ/ω; xc0)

)
∥2 = 0 holds. The asymptotic phase θ increases along all unperturbed

trajectories by means of θ = ωt+Θ(x) at the same constant rate ω. This enables us to use xc(t) and xc(θ ) interchangeably
when parametrizing the time t = θ/ω along the limit cycle. We can therefore rephrase the condition above that defines
the asymptotic phase more intuitively as

lim
t→∞

⏐⏐x(t) − xc
(
θ (t)

)⏐⏐ = 0 . (2.7)

Isochrons. Sets of points x ∈ B(C) with the same asymptotic phase Θ(x) = θ are called isochrons. Accordingly, (2.7) can
be regarded as the isochron condition. As to a rigorous definition, the isochron I(θ ) associated with the phase θ is the
set I(θ ) := {x ∈ B(C) | Θ(x) = θ}, which is a co-dimension one sub-manifold in B(C) that crosses the periodic orbit C
transversally, that is, at a finite angle.

We illustrate the concept of isochrons and the asymptotic phase map in Fig. 2.3. There, the isochrons transversally
cross the (blue) limit cycle. In general, isochrons can be shown to exist for any stable hyperbolic periodic orbit and their
union covers the whole basin of attraction B(C) [91,92]. In mathematical terms, they define a so-called fibration of B(C).
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Fig. 2.3. Phase map Θ:B(C) → S1 associates to each point xj in the neighborhood B(C) of the limit cycle C an asymptotic phase θj ∈ S1 . The set
of all points in B(C) that are mapped onto the same phase θ forms the isochron I(θ ) associated with phase θ . Shown are ten isochrons associated
to the phases θn = 2πn/10, n = 0, . . . , 9. An arbitrarily chosen reference point xc0 ∈ C serves as the initial phase θ = 0.

2.2. Phase response

Phase response curve. The phase response curve or phase resetting curve is a crucial determinant for the interaction
between oscillators. It measures the extent to which an external perturbation p(t) advances or pushes back the asymptotic
phase of an oscillator. A perturbation thus leads to a phase advance or a phase delay, respectively. Given a trajectory xc(t)
along the limit cycle subject to a pulse-like perturbation p(t) during an infinitesimal time interval T = limδ→0(t0−δ, t0+δ),
i.e. p(t ∈ T ) ̸= 0, an immediate strategy to identify the corresponding phase response G(θ, p) at phase θ0 = Θ(xc(t0))
reads:

(i) determine the perturbed point limδ→0 x̃(t0 + δ) ∈ B(C) and its corresponding asymptotic phase Θ(x̃);
(ii) take the difference between the perturbed asymptotic phase and the unperturbed phase Θ(xc) = θ0;
(iii) repeat (i) and (ii) for all phases θ0 = θ ∈ S1 in order to determine the phase response curve

G(θ; p) = Θ
(
x̃
)
−Θ

(
xc
)

= Θ
(
xc + p

)
− θ . (2.8)

One can determine the phase response curve also for arbitrary perturbations during finite time intervals T = (t0, t1)
with t1 > t0. For this, the first step (i) above has to be modified slightly:

(ia) determine the perturbed point x̃(t1) = φ(t1; x̃(t0), p) = φ(t1; xc(t0), p) and the unperturbed one xc(t1) = φ(t; xc(t0)),
as well as the corresponding (asymptotic) phases Θ(x̃(t1)) and Θ(xc(t1)).

The dynamics has to be integrated to determine both the perturbed and unperturbed state at time t = t1. One can
continue integrating for longer times, ideally for t → ∞ and, subsequently, estimate the asymptotic phase difference
according to

G(θ; p) = Θ

(
lim
t→∞

φ
(
t; xc(t0), p

))
−Θ

(
lim
t→∞

φ
(
t; xc(t0)

))
.

Note that this definition coincides with

G(θ; p) = Θ
(
φ
(
t1; xc(t0), p

))
−Θ

(
φ
(
t1; xc(t0)

))
.

In the following we will only consider pulse-like perturbations p(t) that are non-zero at the time instant t0 of the pulse
and therefore omit the explicit time-dependence of p.

Infinitesimal phase response curve. If the perturbation is pulse-like, i.e. T → δ(t0), and sufficiently weak, |p| ≪ 1, then
it is convenient to express the phase response in terms of the infinitesimal phase response curve.3 Using the directional
derivative DΘ(x) [y] := limh→0[Θ(x + hy) − Θ(x)]/h, one can define the infinitesimal phase response curve as a map
Q : S1

→ R with

Q (θ ) := DΘ
(
xc
) [
∂pF

(
xc, 0

)]
= ∇xΘ

(
xc
)
·∂pF

(
xc, 0

)
.

Here, we expressed the directional derivative as the inner product in Rn. ∇xΘ(xc) denotes the gradient of the asymptotic
phase map Θ evaluated on the limit cycle C, and ∂pF (xc, 0) corresponds to an infinitesimal perturbation from the limit
cycle trajectory xc at phase θ .

3 Several papers refer to this as infinitesimal phase resetting curve or phase response function.



12 B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105

Fig. 2.4. Phase response of limit-cycle oscillators. (a) Circular limit cycle of the Stuart–Landau oscillator ż = z − (1 + i)|z|2z with z = x + iy and (b)
the two sinusoidal components of the phase sensitivity function Z = (Zx, Zy), characterizing the response to infinitesimal perturbations in the x- and
y-direction, respectively. (c) The Rayleigh oscillator ẋ = y, ẏ = −ω + (1 − x2)y and (d) its phase sensitivity function.

Phase sensitivity function. The afore-introduced gradient, now written as

Z(θ ) = ∇xΘ
(
xc(θ )

)
= ∇Θ(x)

⏐⏐
x=xc (θ ) , (2.9)

can serve to determine the phase response. Z: S1
→ Rn is commonly referred to as phase sensitivity function or linear

response function [73]. It is closely related to the infinitesimal phase response curve Q : If ∂pF (xc, 0) is a unit vector ej
along the jth direction, then we have Q (θ ) = Zj(θ ). This follows immediately from the dynamics (2.2) with uni-directional
additive perturbation κp = κej. The phase response curve (2.8) can always be computed using Q (θ ) since the definitions
(2.9) and (2.8) imply

Zj(θ ) = lim
p→0

G
(
θ, pej

)
p

. (2.10)

In Fig. 2.4, we depict the phase sensitivity functions of two classic examples, the Stuart–Landau oscillator and
the Rayleigh oscillator. The components of Z = (Zx, Zy) describe the effect of infinitesimal perturbations in the x-
and y-direction, respectively. While the phase sensitivity function of the Stuart–Landau oscillator is sinusoidal in both
components, the slightly angular limit cycle dynamics of the Rayleigh oscillator results in more complicated phase
responses as indicated by the phase sensitivity function.

2.3. Phase dynamics

For infinitesimal perturbations |p| ≪ 1, the phase response curve (2.8) can be linearly approximated by the
aforementioned phase sensitivity function (2.9) in terms of

G(θ; p) ∼= Z(θ )·p . (2.11)

Whenever the dynamics stays close to the limit cycle C, one may further approximate each x by its corresponding value
xc on C such that the reduced phase dynamics can be given by

θ̇ = ω + G(θ; p) = ω + εZ(θ )·p . (2.12)

In (2.12) we used the parameter κ = ε ≪ 1 to indicate that the perturbation is very small. In other words, the phase
response to a weak, pulse-like perturbation p at phase θ c can be approximated by the product Z(θ c) ·p. That is, small
perturbations |p| ≪ 1 do not move the oscillator too far away from the limit cycle C and the dynamics x can be
approximated sufficiently well by the value on the periodic orbit, x(t) ≈ xc(t), see Fig. 2.2. One can formally expand
the dynamics ẋ = F(x, p) for small p around the unperturbed dynamics f (x), i.e., F(x, p) = f (x) + ∂pF(x, 0)p + O2 (p).
Taken together, we obtain the asymptotic phase dynamics

θ̇ =
d
dt
Θ(x) = ∇xΘ(x)·ẋ ≈ ∇xΘ

(
xc
)
·ẋc ≈ ∇xΘ

(
xc
)
·
[
f (xc) + ∂pF

(
xc, 0

)
p
]

and, because θ̇ c = ∇xΘ(xc)·f (xc) = ω holds, this form reduces at first order to (2.12).
The phase dynamics (2.12) of a single oscillator forms an essential building block to determine the phase dynamics of

an oscillator network. Deriving the individual terms in (2.12) thus poses the first main challenge. In the following section,
we will briefly introduce several different methodologies along which such a derivation can be achieved.

3. Phase reduction techniques for a single oscillator

A first and direct way to quantify the phase response to a (small or large) stimulus p of the limit cycle trajectory xc(t)
at a particular phase θ dates back to the work by Glass, Mackey and co-workers [93] in the early 1980s. Their method
leads to the phase response function G(θ, p) as introduced in Section 2, where we also presented how the method can be



B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105 13

implemented experimentally. Despite its simplicity, such an experimental procedure is not very accurate when it comes
to infinitesimal perturbations.

As fundamental it is to properly derive the phase dynamics of a single oscillator x, as many ways there are to achieve
a phase reduction. The important concepts to do so – limit cycle C, basin of attraction B(C), asymptotic phase map Θ ,
isochrons I(θ ), infinitesimal phase response curve Q, phase sensitivity function Z – have been introduced in the previous
section. In the following, we will briefly collect different methodologies how to establish the phase dynamics and the
necessary properties of the limit cycle to define (2.12),

θ̇ = ω + G(θ; p) = ω + εZ(θ ) · p
Z = ∇xΘ(xc)

for an infinitesimal, pulse-like perturbation p.

3.1. Winfree’s reduction via isochrons

The idea behind the reduction via isochrons dwells on explicit expressions of the asymptotic phase map Θ(x) along
the isochrons I(θ ) and of the limit cycle C. Once these expressions have been obtained, the phase sensitivity function Z
can be determined as the gradient of the asymptotic phase map evaluated on the limit cycle, that is, Z = ∇xΘ(xc). In
principle, this approach can be applied to every dynamical system that exhibits stable limit cycle oscillations. However,
it is essential to include explicit expressions of Θ and C, which, unfortunately, cannot be obtained analytically in the
majority of cases.

3.2. Kuramoto’s reduction via Floquet eigenvectors

Explicit analytic expressions of the asymptotic phase map Θ(x) and of the isochrons can only be derived for selected
examples of oscillators. However, one can exploit the relationship between the asymptotic phase of an oscillator x and the
eigenvectors associated with the linearized part of f (x) about its periodic limit cycle solution xc . The underlying theory
of first-order linear systems with periodic coefficients is called Floquet theory [94] and has been promoted by Kuramoto
to being applied for phase reductions [12]. This technique can be applied to any dynamical system with stable limit cycle
oscillations. While it does not rely on the explicit form of the phase map Θ , it requires an explicit expression of the limit
cycle C.

To briefly revise the idea of Floquet eigenvectors for deriving the phase sensitivity function Z , we consider an oscillator
ẋ = f (x) with a stable T -periodic limit cycle solution xc . For small deviations u(t) off xc(t), we find for x(t) = xc(t)+ u(t)
the linear system

u̇ = L(t)u , with L(t) = ∇f (x)
⏐⏐
x=xc (t) (3.1)

with L(t) being a T -periodic n×n-matrix. A general solution of (3.1) takes on the form u(t) = S(t)eΛtu(0), where S(t) is a
T -periodic matrix with initial condition S(0) = I and Λ is a time-independent matrix. The matrix exponential exp(Λt) is
defined in the usual way.4 The normalized left and right eigenvectors of Λ associated with eigenvalue λj will be denoted
by vj and uj. The limit cycle solution xc being stable implies Re(λj) ≤ 0. While one eigenvalue λ0 ≡ 0 vanishes, which
corresponds to (phase) disturbances along the periodic orbit C = {xc(t) | t ∈ R}, the other eigenvalues λ1, . . . , λn−1 are
assumed to have negative real parts. It is true that u0 = ẋc(0). That is, u0 is a tangent vector of C at point xc(0) and has the
same direction as that of the infinitesimal phase disturbances. Moreover, u0 satisfies S(t)u0 = ẋc(t).5 Next, we use the facts
that the phase sensitivity function Z(θ ) is normal to the tangent space T (θ ) of the isochron I(θ ) at point θ (t) = xc(θ (t))
and that T (0) is free from the zero-eigenvector component, cf. [Chapter 3.4, 12]. This means that Z(0)uj = 0 for all j > 0.
Hence, Z(0) must be proportional to the left zero-eigenvector v0. Since Z(θ ) has been introduced as the gradient of the
asymptotic phase map Θ(x) evaluated on the limit cycle, we can differentiate Θ(xc) = θ c(t) on the limit cycle and find
Z(θ ) · ẋc(t) = ω, when using θ̇ c = ω = 2π/T . By identifying Z(t) with Z(θ ) via θ ↦→ t/ω, we can combine our findings
and arrive at

Z(t) = ωv0S(t)−1 . (3.2)

4 eΛt
=
∑

∞

k=0
1
k!Λ

ktk = In + Λt +
Λ2 t2
2! + · · ·.

5 Indeed, differentiating ẋ0(t) = f (x0(t)) on both sides results in

d
dt

ẋc (t) =
d
dt

f (xc (t)) = ∇f (x)
⏐⏐
x=xc (t) ·ẋ

c (t) = L(t)ẋc (t) .

So ẋc (t) is a particular solution of u̇ = L(t)u. Thus, we can write ẋc (t) = S(t)eΛt ẋc (0). Using the definition of the matrix exponential together with
Λu0 = λ0u0 = 0, the right-hand side reduces to S(t)u0 as wanted.
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3.3. Direct method

Most direct methods, such as the experimental procedure by Glass, Mackey and co-workers mentioned above,
suffer from numerical deficits when computing the phase sensitivity function Z via G(θ, p) in the limit of infinitesimal
perturbations ∥p∥ ≪ 1. An exception presents the recently proposed method by Novičenko and Pyragas. They proposed an
algorithm based on the same idea to capture the oscillator’s response to short finite pulses at different phases of the limit
cycle [95], hence the name ‘‘direct method’’. Conceptually, their adaptation exploits the linearized dynamics about the
limit cycle C. The here-presented method is a convenient reformulation of Kuramoto’s reduction via Floquet eigenvectors
of the previous subsection that allows for a straightforward numerical implementation.

As before in (3.1), we let u(t) denote small deviations from the limit cycle trajectory xc(t) such that u̇ = L(t)u holds
where L(t) = ∇f (x)

⏐⏐
x=xc (t) and with initial condition x(0) = xc(θ ) for the initial phase θ . To obtain the jth component Zj

of the phase sensitivity function Z , we choose the initial condition u(0) = (u1(0), . . . , un(0))⊺ with uk(0) = δkj where δkj
denotes the Kronecker-δ. Because of the asymptotic stability of the limit cycle, the vector u(pT ) with p ∈ N and T the
oscillator’s period becomes parallel to the velocity vector ẋc(θ ) as p → ∞ [95]. That is, limp→∞ u(pT ) = ẋc(θ )Zj(θ ) by
definition of the phase sensitivity function Z . Applying the pseudo-inverse of ẋc(θ ), we obtain for the phase sensitivity
function

Zj(θ ) = lim
p→∞

ẋc(θ ) · u(pT )
ẋc(θ ) · ẋc(θ )

. (3.3)

For more details, e.g., how to improve this algorithm by replacing the vector u by the fundamental matrix Φ so that Z
can directly be extracted from Φ, we refer to Novičenko’s and Pyragas’ instructive work [95].

3.4. Adjoint method

The adjoint method is nowadays the standard technique to determine the phase sensitivity function Z of an oscillator
x [46,48,53,55,64]. Computing Z(θ ) in a direct way as the gradient of the (asymptotic) phase map Θ(x) evaluated on the
limit cycle C = {xc(t): t ∈ R} can become arbitrary difficult, as one has to find analytic expressions for the phase mapΘ . As
it turns out, the function Z(θ ) is the solution to the adjoint problem associated with the dynamics ẋ = f (x) when linearized
about the unperturbed limit cycle C. For an infinitesimal perturbation p the perturbed trajectory x(t) = xc(t)+ u(t) stays
arbitrarily close to the T -periodic limit cycle trajectory xc(t), such that the dynamics of u(t) can be assumed linear, that
is, u̇ = L(t)u with L(t) = ∇f (x)

⏐⏐
x=xc (t) as before. Solutions to the linearized equation satisfy( d

dt − L(t)
)
y(t) =: (Ly) (t) = 0 ,

where L is a linear operator on the space of Rn-valued T -periodic functions. We define the standard inner product ⟨·, ·⟩

on T -periodic functions in Rn as

⟨u(t), v(t)⟩ =

∫ T

0
u(t) · v(t)dt .

Then, the adjoint linear operator L∗ satisfies ⟨u,Lv⟩ = ⟨L∗u, v⟩. In particular, we find that(
L∗y

)
(t) = −ẏ(t) − L(t)⊺y(t) . (3.4)

When determining the phase shift between the asymptotic phase θp = Θ(xc + p) after an infinitesimal perturbation
p = u(t) at time t0 and the unperturbed phase θ c = Θ(xc), we note that for the phase shift ∆θ = θp − θ c one has

∆θ =

⟨
Z(t), xc(t) + u(t) − xc(t)

⟩
+ O(|u|

2) .

The phase shift ∆θ is independent of time after the perturbation at t = t0. Hence,

0 =
d
dt

⟨
Z(t), u(t)

⟩
=

⟨dZ(t)
dt

, u(t)
⟩
+

⟨
Z(t),

du(t)
dt

⟩
=

⟨dZ(t)
dt

, u(t)
⟩
+

⟨
Z(t), L(t)u(t)

⟩
=

⟨dZ(t)
dt

, u(t)
⟩
+

⟨
L(t)⊺Z(t), u(t)

⟩
=

⟨dZ(t)
dt

+ L(t)⊺Z(t), u(t)
⟩
=

⟨
−
(
L∗Z

)
(t), u(t)

⟩
.

Since the perturbation u(t) was assumed arbitrary, it follows that

L∗Z(t) = 0 . (3.5)

With Θ(xc(θ )) = θ and taking the time derivative on both sides, we use θ̇ = ω to find

Θ̇
(
xc(θ )

)
= Z(t) ·

dxc(θ )
dt

= ω . (3.6)

This normalization is required such that Z(t) is the unique solution to (3.4)–(3.6).
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Numerical implementation in XPPAUT and Matcont

For arbitrary limit cycle oscillators, one can solve L∗y = 0 numerically. As numerical procedures do not rely on a
critical distance to a bifurcation point, the adjoint method can provide a valuable reference to monitor accuracy, and, by
this, the validity of analytic phase reduction techniques as a system gradually moves away from a bifurcation point. We
will exploit this capacity in the forthcoming Sections 8 and 9.

The numerical exploration of the phase sensitivity function Z as the solution to the adjoint problem (3.4)–(3.6) may
present a problem in itself. The solution Z(T ) = Z(0) of (3.5) is periodic, so that we encounter a boundary value problem.
While a direct (forward) integration is not feasible, one can integrate (3.5) backward in time [96]. As long as the limit cycle
is asymptotically stable, backward integration retrieves the periodic solution of the adjoint equation and cancels possible
higher harmonics out. The adjoint method is efficiently automated in Ermentrout’s software package XPPAUT [97]. The
implemented algorithm, however, relies on a numerical interpolation of the Jacobian matrix being evaluated at the limit
cycle solution. Moreover, the procedure shows a slow convergence of the adjoint solution towards the phase sensitivity
function Z when the limit cycle is only weakly stable. Govaerts and Sautois [98] proposed an alternative numerical
approach to solve the adjoint problem. Their algorithm solves the corresponding boundary value problem using an
orthogonal collocation method with Gauss collocation points. As a by-product, they obtain the phase sensitivity function
Z . This method is fast, rendering it particularly useful when a large number of phase sensitivity functions are needed,
e.g., for the evolution of limit cycles if one parameter of the system is changed. This method is implemented in the
Matlab software package MatCont [99].

3.5. Haken’s reduction via averaging

An alternative and more ad-hoc approach to reduce the phase dynamics of a (perturbed) oscillator has been promoted
by Haken and applies averaging. The idea is to average the oscillatory dynamics over one cycle when assuming that
its amplitude and phase change slowly as compared to the oscillator’s frequency. Following a three-step approach, first
the time-dependent amplitude and phase are fixed. The system is subsequently integrated over one period to remove all
harmonic oscillations; see also [86,87] for a rigorous reasoning. Last, amplitude and phase are considered again to be time-
dependent [33,75]. Haken popularized this procedure as a combination of rotating wave and slowly varying amplitude
approximations [88]. While this technique is usually applied to weakly nonlinear oscillations described by second-order
differential equations, see for an overview, e.g., [100,101], it can also be applied to systems of first-order differential
equations, as will be illustrated below.

As averaging is applied to the linearized dynamics about an unstable fixed point within a stable limit cycle solution xc
(in contrast to the linearized dynamics about xc as in the previous subsections), this technique loses accuracy for large-
amplitude oscillations. Still, it provides a straightforward phase model whose parameters are directly linked to those of
the underlying oscillatory model, and presents a valuable addition to the variety of phase reduction techniques.

Applying Haken’s reduction technique to an oscillator requires stable limit cycle oscillations that can be transformed
into a (nearly) circular shape by an appropriate change of variables.6 In the following we will assume a planar oscillator
ẋ = f (x;µ) subject to (additive) perturbations εp where the state vector is given by x = (x, y) ∈ R2. The unperturbed
dynamics lead to a stable circular limit cycle around the unstable fixed point x0 = (0, 0). We can perform a polar
coordinate transformation x = R cos(θ ), y = R sin(θ ) with θ = ωt + φ, where φ denotes a slowly varying phase deviation
due to the perturbation. Moreover, we have R2

= x2 + y2 and θ = tan−1(yk, xk); tan−1 is the quadrant-corrected inverse
tangent.7 The (central) frequency ω, however, has to be determined, e.g., as the (absolute value of the) imaginary part
of the complex conjugate pair of eigenvalues of the Jacobian of f , that is, ω = Im(λ+) with λ± ∈ C the pair of complex
eigenvalues.

Assuming that R, φ hardly change over one period of oscillation, T = 2π/ω, i.e.⏐⏐Ṙ/R⏐⏐ ≪ ω and
⏐⏐φ̇/φ⏐⏐ ≪ ω , (3.7)

one can average the dynamics over the interval [0, T ) by means of ⟨f (s)⟩ :=
1
T

∫ T
0 f (s)ds. Exploiting trigonometric identities,

the (averaged) dynamics φ̇ and Ṙ can be expressed in the state variables x, y as8

φ̇ = −ω +

⟨
1
R2 (xẏ − yẋ)

⟩
(3.8a)

6 Such a coordinate change is always possible for, e.g., oscillations that emerge through a Hopf bifurcation. Away from that point, higher order
corrections might be in place; for a corresponding approximation scheme see [86].
7 Note that θk rather takes the form of the protophase than the phase. For circular oscillations, however, the phase and protophase are (nearly)

the same.
8 The averaging in (3.8) is sound also from a time-scale separation argument. The assumption (3.7) implies that φ = φ(τ ) and R = R(τ ) depend

on a slower time τ = εt . As a result, we obtain the dynamics of the phase deviation φ and of the slowly varying amplitude R by averaging over
the period T = 2π/ω. Indeed, using polar coordinates in the angular brackets of (3.8) one can see that all terms at least of order O(R). Close to,
e.g., a supercritical Hopf bifurcation, 0 < R ≪ 1 is small so that this averaging is appropriate.

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scholarpedia.org/article/MATCONT
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Ṙ =

⟨
xẋ + yẏ

R

⟩
. (3.8b)

We retrieve the (full) phase dynamics by inserting (3.8a) into θ̇ = ω+ φ̇. Note that the system (3.8) describes both phase
and amplitude dynamics, which can be reduced further if we assume that the (non-trivial) fixed point solution of (3.8b)
approximates the (time-varying) amplitude R sufficiently well. Upon inserting the (stationary) solution R into (3.8a), we
eventually find the reduced phase dynamics φ̇, which will split into a natural frequency part of order O(1) and a part of
order O(ε). The latter may further decompose into the product of the phase sensitivity function Z and the perturbation
p. The inherent averaging of this reduction method, however, is detrimental for assessing the effect of an infinitesimal
perturbation. By contrast, the method becomes more insightful when considering a network of weakly coupled oscillators.
In the weak coupling limit, averaging is instrumental for computing the phase deviations due to the coupling. Replacing
p by the respective coupling terms with the other oscillators, the interaction terms of the reduced phase dynamics can
be regarded as the product of phase sensitivity function Z and coupling terms averaged over one period T .

4. Phase reductions and normal forms

Although the phase reduction techniques presented in the previous section slightly differ in their approach how to
derive the phase dynamics, they all have in common that they rely on the exact forms of the limit cycle and of the
(linearized) dynamics around it. All the presented phase reduction techniques are equivalent and lead to identical results.
We will analytically demonstrate that this is true along one particular example for which it is possible to indicate the
explicit expressions of the limit cycle trajectory and of the linearized dynamics around it.

Numerical phase reduction techniques. General oscillatory dynamics cannot be treated analytically and one has to rely on
numerical assessments. The required properties for phase reduction, such as the limit cycle and the linearized dynamics
around it, are then computed, stored and exploited numerically. The adjoint method presented in Section 3.4 has become
a standard phase reduction technique due to its algorithmic implementation in the software packages XPPAUT [97] and
MatCont. The direct method in Section 3.3 serves as a powerful alternative. We refer to these two methods as numerical
phase reduction techniques.

Analytic phase reduction techniques. Analytic approaches typically build on so-called canonical forms of the oscillatory
dynamics. Center manifold and normal form reductions have proven very helpful to simplify the dynamics, in particular if
oscillations have emerged through particular bifurcations. The transformed, simplified dynamics allow to retrieve explicit
analytic forms of the limit cycle trajectory as well as of the linearized dynamics around it so that the phase dynamics can
be obtained analytically following either of the techniques in Section 3. In the following, we will refer to these two-step
approaches that combine a preceding normal form reduction with a subsequent phase reduction as analytic phase reduction
techniques.

A direct consequence of such two-step reductions is that the accuracy of the analytically obtained phase dynamics
typically scales with the distance to the bifurcation point. The reason is that the transformations made in the first step
result in simplified dynamics that are given in the form of a truncated power series. While the corresponding residual
is negligibly small in the direct vicinity of the bifurcation point, the error may become larger the farther away from the
bifurcation point. Hence, also the reduced phase dynamics become less accurate for growing distances from the bifurcation
point. That is why analytic phase reduction techniques require a careful assessment of the underlying dynamics with
respect to their bifurcation structure. On top of that, different center manifold and normal form reduction methods may
also differ as in how the dependence on the distance to the bifurcation point is respected in the simplified dynamics.
Below we will illustrate these differences in more detail, as they are fundamental for a possible mismatch between
different analytic reduction techniques. In short, analytic two-step phase reduction techniques may appear daunting both
in their rather intricate application of subsequent transformations, and in their restricted validity away from bifurcation
boundaries. Still, they establish an explicit link between original model parameters and the resulting phase dynamics,
which numerical phase reduction techniques can only provide through an extensive scanning of the parameter space. As
such, they retain their grand appeal by allowing for an analytic intuition that may get lost along numerical approaches.

Oscillations and bifurcations. The above mentioned transformations as the first step of an analytic phase reduction may
be applied to any kind of dynamics exhibiting stable oscillatory behavior. For the sake of legibility, however, we will
restrict ourselves to oscillatory dynamics that have emerged through a so-called supercritical Hopf bifurcation, i.e. at the
transition where oscillations with a finite frequency emerge or vanish. The Hopf bifurcation allows to rigorously derive
a canonical model. It is the only type of bifurcation that allows a step-by-step reduction of the phase dynamics without
rough heuristics. The seminal work by Eric Shea–Brown and co-workers [64] provides a nice account of phase reductions
of the four simplest, co-dimension one bifurcations that lead to oscillatory dynamics: Hopf, Bautin, SNIC (saddle–node
on an invariant circle) and homoclinic. The global character9 of the SNIC and homoclinic bifurcations, however, requires

9 Bifurcations are typically classified as ‘local’ or ‘global’. A local bifurcation is characterized through the loss of stability or the disappearance
of an equilibrium. Qualitative changes of the system’s dynamical behavior are localized in a small neighborhood. Outside this neighborhood the
dynamics remains qualitatively identical unless other bifurcations occur there simultaneously. If one cannot confine the qualitative changes through
a bifurcation to a (small) neighborhood, one speaks of a global bifurcation. Examples for local bifurcations are saddle–node, pitchfork, transcritical
or Hopf bifurcations, while homoclinic and SNIC bifurcation are of global character.

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scholarpedia.org/article/MATCONT
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an educated guess about the limit cycle trajectories away from the respective fixed points undergoing the particular
bifurcation, so that the corresponding phase sensitivity function cannot be parametrized in terms of the original oscillator
dynamics. The Bautin bifurcation (or generalized Hopf bifurcation) has the normal form that agrees with that of the
Hopf bifurcation except for the sign of the parameter of the cubic term is different. This leads to a subcritical Hopf
bifurcation, whose branch of unstable periodic orbits becomes stable at a saddle–node bifurcation of periodic orbits. Given
the similarity of their normal forms, it appears reasonable to restrict our considerations on phase reductions of oscillatory
dynamics that emerge through a Hopf bifurcation.

4.1. Canonical models, center manifolds and normal forms

Oscillator dynamics on the limit cycle are similar across models if these oscillations emerge through the same particular
type of bifurcation. This similarity gives rise to canonical models for every type of bifurcation, which capture the essence
of the dynamics near the bifurcation point. All dynamical systems with similar dynamical behavior can be transformed
into a canonical model. The insights from a canonical model can be very fruitful for identifying the phase dynamics, as for
systems close to the same bifurcation it suffices to consider canonical models of the corresponding dynamical systems [46].
Even without knowing the exact equations of the canonical model, the phase sensitivity function Z can often be anticipated
to have a particular form that is characteristic for the type of bifurcation, see, e.g., [64,102]. However, determining the
exact form of the limit cycle and of the dynamics around it crucially depends on the equations of the canonical model.
Unfortunately, there is a caveat. As Hoppensteadt and Izhikevich properly remarked in their textbook [46], there does not
exist a general algorithm for deriving canonical models. Normal form and center manifold theories have proven successful
candidates to obtain simplified equations and to reduce their dimension, respectively. We here clarify the intricate link
between these theories and indicate how to apply them for subsequent phase reductions.

The concepts of center manifolds and of normal forms are so closely related that many textbooks do not bother to
distinguish between them. Often, the center manifold reduction of a dynamical system is computed first in order to reduce
the dimension of the system. Afterwards, this simplified, lower-dimensional system is brought into normal form. However,
there is a subtle conceptual difference to the actual normal form reduction. A normal form reduction is characterized
through smooth, consecutive transformations or changes of coordinates, which preserve the essential characteristics of
the underlying dynamical system and which do not reduce its dimension. Via coordinate transformations a normal form
reduction yields a thorough picture of the dynamics in terms of the system’s stable, unstable and center manifolds. Normal
form reductions even provide the stable and unstable fibrations over the center manifold [77]. In this sense, normal forms
can be considered more general because the reduced analytic expressions accurately describe the dynamics also away from
bifurcation points.

Center manifold. Whenever a dynamical system passes through a bifurcation, there is a sudden qualitative change in
the system’s behavior. For instance, a fixed point solution of the dynamical system switches its stability. This change in
stability is represented in the spectrum of the linearized dynamics about the fixed point: the real part of at least one
eigenvalue changes signs and becomes zero at the critical bifurcation point. The center manifold is an invariant manifold
corresponding to the eigenvectors associated with the eigenvalues with zero real part.10 The dynamics on the center
manifold is slower than that on the stable and unstable manifolds, corresponding to the eigenvalues with negative and
positive non-vanishing real parts, respectively. The attraction towards the stable manifold as well as the repulsion from
the unstable manifold are exponentially fast. Hence, one can determine the entire dynamics via the center, or critical,
modes, i.e. through the variables xslow corresponding to the slow flow along the center manifold. More formally, the local
behavior of the fast variables xfast around the fixed point can be expressed as

xfast = C (xslow) . (4.1)

Importantly, the function C , albeit arbitrary, only contains terms of second and higher order. The expression (4.1)
characterizes the center manifold locally with the corresponding dynamics given by

ẋslow = Lxslow + N
(
xslow, C (xslow)

)
. (4.2)

The real parts of all the eigenvalues of the matrix L vanish and N contains all the nonlinear terms. This center manifold
reduction effectively reduces the dimensionality of the system to the number of eigenvalues with vanishing real part. One
may interpret this dimensionality reduction in that the fast variables xfast are prescribed by the slow ones xslow, which in
the physics literature is often referred to as Haken’s slaving principle [88,103].

In the case of a supercritical Hopf bifurcation, a stable fixed point loses stability as a pair of complex conjugate
eigenvalues crosses the imaginary axes and stable limit-cycle oscillations emerge. Hence, we have two eigenvalues with
zero real part, and the corresponding center manifold is two-dimensional.

10 The eigenvectors associated with the eigenvalues with vanishing real part span the center eigenspace of the respective fixed point. The center
manifold has the same dimension as the center eigenspace and is tangential to it at the fixed point.
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Normal form. The normal form of a bifurcation is the ‘simplest’, reduced equation (4.2) that exhibits the qualitative
features of the bifurcation type. The dimension of the normal form coincides with the number of critical modes, and
hence with the dimension of the center manifold. The normal form can be achieved, e.g., by removing all non-resonant
terms in the nonlinear function C .11

Although the nomenclature appears somewhat misleading, normal form reductions do not necessarily result in the
normal form of a bifurcation as defined above. This is only true close to bifurcations of dynamical systems where all
eigenvalues have zero real part, e.g., as in the case of a Hopf bifurcation in a two-dimensional dynamical system. The
reason for this is that normal form reductions yield a simplified equation – a ‘normal form’ in the strict sense – of the same
dimension as that of the underlying dynamical system. As such, a normal form reduction is a rigorous transformation of a
dynamical system into a simplified equation without reducing its dimension, whereas a center manifold reduction reduces
the dimension without simplifying the equation.12 Interestingly, given the normal form through a normal form reduction,
the critical center modes will ‘miraculously’ decouple from the fast variables and the normal form of the bifurcation on
the center manifold is retained [77,104]. In the following we will refer to the ‘normal form of a bifurcation’ simply as
normal form unless stated otherwise.

A bit of history. Normal form theory goes back to Poinaré’s work [81] and has ever since attracted attention as a technique
of transforming nonlinear differential equations to generic and simpler standard forms near a (local) bifurcation point.
The precise normal form can be determined in different ways. While coordinate transformations have been frequently
used, addressing normal form calculations more categorically involves a matrix representation method, an adjoint method
and a method based on the representation theory of the Lie algebra sl(2,R). All these methods are strongly connected
and, as mentioned earlier, based on the ideas of Takens [83,84]. The resulting normal form can be expressed as lying in
the kernel of an adjoint linear operator on the space of homogeneous polynomials [75–77]. Alternatively, a perturbation
technique has been proposed by Nayfeh [78] and Yu [105], which dwells on the methods of multiple time scales [100]
and of intrinsic harmonic balancing [106]. The reductive perturbation approach of Kuramoto in Section 4.3.1 also uses a
two time-scale separation.

More recent developments. Other approaches to derive normal forms can be subsumed into time averaging [75,85], a
Lyapunov–Schmidt reduction method [79], and a singular point value method [107,108]. The latter were originally meant
to determine focus, or focal, values of a (degenerated Hopf) critical point to prove the existence (and the maximal
amount of multiple) limit cycle(s), but this requires the computation of higher-order normal forms [80]. The idea
behind the singular point value method is to introduce formal power series and recursive forms to calculate singular
point quantities. The Lyapunov–Schmidt reduction approach, on the other hand, elegantly reformulates the problem of
proving the existence of periodic solutions emerging from Hopf bifurcations as that of finding a family of solutions of an
abstract equation in a functional space of periodic functions. Its reformulation in terms of functional analysis allows for
a generalization of the problem in infinite-dimensional space, cf. [82]. Essentially, one projects the entire system under
study into the subspace that is spanned by the eigenvectors associated with the pair of purely imaginary eigenvalues at
the Hopf point. This results into a set of algebraic equations while the other approaches yield differential equations [80].
By projecting the system into a specific subspace, also the methods of time averaging and of multiple time scales fall in the
same category. For time averaging, one transforms the original autonomous system ẋ = f (x;µ) into a non-autonomous
one via y = exp(tJ )x. Here, J is the Jacobian of the vector field f (x;µ) at x = 0. The domain Ω ⊂ Rn of x ∈ Ω is invariant
under the Lie group Γ = {exp(tJ ) | t ∈ R}. The time-dependent system is subsequently solved using the conventional
averaging method [85,109,110]. It is important to realize that most of these methods rely on a ‘preprocessing’ and a
dimensionality reduction following center manifold theory, which assures the existence of an amplitude equation and also
indicates its order. For instance, the singular point value method first applies a center manifold reduction to the original
dynamics, which yields a two-dimensional center manifold associated with the Hopf bifurcation. The perturbation method,
by contrast, does not necessarily require such a center manifold reduction [80,111,112].

4.2. Hopf normal form

Whenever a single oscillatory dynamics emerges through a (supercritical) Hopf bifurcation, it is possible to transform
it into Hopf normal form

ẇ = f (w;µ) =

M−1∑
m=0

(−1)mσm|w|
2mw + O2M (w) , w ∈ C . (4.4)

11 In consequence, the normal form will contain only resonant monomials wm1
1 · . . . · w

mn
n with mj ∈ N, j = 1, . . . , n, satisfying

m1 + · · · + mn = k and m1λ1 + · · · + mnλn − λk = 0, for each k ≥ 2. (4.3)
For pure imaginary eigenvalues λj of the dynamic’s Jacobian, the second equation of (4.3) becomes indeed a resonance among frequencies in the
usual sense. This resonance property can be proven in a straightforward way for the semi-simple normal form style, cf. Theorem §2.1.5 in [76]; see
also below.
12 A center manifold reduction may even lead to the loss of some important nonlinear properties of the system under study that are linked to
the dynamics on the stable and unstable manifolds.
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Here, σm = σm(µ) ∈ C are complex-valued coefficients, the parameter µ ∈ R denotes the bifurcation parameter and can
be interpreted as the distance to the Hopf bifurcation at µ = µ̃ = 0. The integer M ∈ N defines the order of the Hopf
normal form. For second order, i.e. for M = 2, (4.4) takes on the form of a complex Stuart–Landau oscillator:

ẇ = αw − β|w|
2w

with α ≡ σ0 = u0 + iv0 and β ≡ σ1 = u1 + iv1. Setting u0(µ) = µ while keeping the other parameters fix with u1 > 0,
circular oscillations emerge at µ = 0 with radius R =

√
µ/u1 ∝

√
µ. Here, µ indeed denotes the distance to the Hopf

bifurcation.

4.3. Hopf normal form reductions

We consider the dynamical system

ẋ = f (x;µ)

with state vector x ∈ Rn and vector field f = (f1, . . . , fn):Rn
→ Rn. The system has a stable fixed point solution x̃,

i.e. f (x = x̃;µ) = 0 for small values of the bifurcation parameter µ ∈ R. At a given parameter value µ = µ̃ the fixed
point x̃ undergoes a supercritical Hopf bifurcation: For µ < µ̃, the dynamics ẋ = f (x;µ) has a stable fixed point, which
loses stability at µ = µ̃, and stable oscillations emerge for µ > µ̃. Without loss of generality we translate the fixed point
to the origin, i.e. x̃ = 0, and assume that µ̃ = 0. Then, for µ > 0, stable limit cycle oscillations emerge with natural
frequency ω ̸= 0 and amplitude R = O(ε) where ε =

√
µ.

In the following subsections we will illustrate three different ways how to reduce ẋ = f (x;µ) to the Hopf normal form
(4.4). In Section 4.3.1 we will present a physically motivated, reductive perturbation approach promoted by Kuramoto [12].
Its inherent separation of time-scales lets this approach resemble a center manifold reduction. A mathematical approach
of a Hopf normal form reduction using nonlinear, so-called Poincaré transformations will be subject in Section 4.3.2. For
simplicity, we will consider a two-dimensional system so that the dimension of the phase space already coincides with the
one of the expected center manifold. While this approach is hence kept as mathematically exact as possible, the concept
extends naturally to general n-dimensional systems, where the governing equations restricted to the center manifold can
be computed with a projection method as outlined in [Chapter 5.4, 82]. Ultimately, we will provide a rather general normal
form reduction approach in Section 4.3.3 that goes back to early ideas of Takens [84] and utilizes an adjoint linear operator
expressed in a Lie bracket formalism. To compare it against the two other methods, we have applied it exemplarily to a
two-dimensional system in Appendix A.4, where we also provide the computations of Hopf normal forms of higher order.

The different Hopf normal form reductions to be presented below vary not only in their methodical approach, but also
in their accuracy. While, e.g., the reductive perturbation approach in Section 4.3.1 discards any higher order dependence
on µ, the nonlinear transforms approach, Section 4.3.2, respects this µ-dependence at all times. The differences between
the reduction techniques13 may be negligible for small-amplitude oscillations, that is, close to the Hopf bifurcation point
with 0 < µ ≪ µ0 ≪ 1. But the resulting normal form techniques will diverge drastically when the amplitudes of
oscillation become larger. These differences eventually become evident in the reduced phase dynamics and may cause
qualitatively different collective dynamics.

4.3.1. Kuramoto’s reductive perturbation
To outline Kuramoto’s early approach to derive the Hopf normal form we adopt the reasoning of Chapter 2 in his

seminal book ‘‘Chemical Oscillations, Turbulence, and Waves’’ [12]. The approach belongs to the general group of reductive
perturbation methods, which include all related techniques using stretched space–time coordinates. It builds on the method
of multiple scales via a small parameter expansion, much related to bifurcation theory [113]. As has already been noted by
Haken and Kuramoto [114,115], the method lacks some precision in its mathematical theory, but has nonetheless proven
to be of indisputable utility in practice.

The goal of the reductive perturbation approach is to derive a so-called amplitude equation, which coincides with
the canonical model of an oscillator close to a supercritical Hopf bifurcation. We consider the n-dimensional dynamics
ẋ = f (x;µ) which has a stable fixed point solution x = 0 that undergoes a Hopf bifurcation at µ = 0, giving rise to stable
limit-cycle oscillations with amplitude R = O(ε) where ε =

√
µ. In the following we will only consider µ > 0. Next, we

expand f (x;µ) = f (x; ε2) around x = 0 in terms of

f (x; ε2) = n1(x; ε2) + n2(x, x; ε2) + n3(x, x, x; ε2) + O4(x) ,

13 The accuracy of the reductive perturbation method is at first order in µ. The accuracy of the nonlinear transform approach is at the same
order in µ as the order M of the normal form. As to the third approach based on Takens, it is possible to achieve the same accuracy as with the
nonlinear transform approach. To do so, one assumes the parameter µ to be an additional variable and consider the n + 1-dimensional, so-called
extended system. The subsequent transformations then become parameter-dependent and can be implemented in the corresponding algorithm, see
Section 4.3.3 and [104]. For the sake of simplicity, however, we present only the non-extended system, thereby providing another normal form with
the same accuracy as the reductive perturbation approach.
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where the functions nk are given by

nk(u(1), u(2), . . . , u(k)
; ε2) =

n∑
i1,...,ik=1

1
k!

(
∂kf (x; ε2)

∂xi1∂xi2 . . . ∂xik

)
x=0

u(1)
i1
u(2)
i2
. . . u(k)

ik

with u(j)
=

(
u(j)
1 , . . . , u

(j)
n

)⊺

∈ Rn. We further expand nk with respect to ε2 and immediately obtain

f (x; ε2) = L̂0x + ε2L̂1x + n2(x, x) + n3(x, x, x) + O4(x) , (4.5)

where n2(x, x) = n2(x, x; ε2 = 0) and a similar expression for n3; see also Appendix A.2.1. In (4.5) we omitted all O(ε2)
terms in n2 and n3. Since we assumed x to undergo a Hopf bifurcation, the operator L̂0 has a pair of purely imaginary
eigenvalues ±iω0, while the other n − 2 eigenvalues have non-vanishing real part. Let u and v denote the right and left
eigenvectors of L̂0, respectively, corresponding to the eigenvalue +iω0. That is, L̂0u = iω0u and vL̂0 = iω0v. They are
normalized as vu = v1u1 + · · · + vnun = 1 and fulfill vū = v̄u = 0. Furthermore, let x0 denote the solution to the
linearized system, ẋ = L̂0x, which can be given as

x0(t) = weiφ(t)u + w̄e−iφ(t)ū . (4.6)

w is an arbitrary complex number (the ‘‘complex amplitude’’), and φ(t) = ω0t . In general, however, a solution x(t) that
satisfies the full (non-linearized) dynamics ẋ = f (x; ε2) will deviate from x0(t). When introducing a rescaled time, τ = ε2t ,
and consideringw = w(τ ) to be time-dependent (on the slower time scale), we can describe the time-asymptotic behavior
of x(t) in the form

x = x0(w, w̄, φ) + ρ(w, w̄, φ) ,

ẇ = f (w, w̄) . (4.7)

The functions ρ and f are to be determined perturbatively, i.e., by considering a ‘small’ deviation from the exact solution
x = x0 and expanding the dynamics around it. Eq. (4.7) is referred to as the amplitude equation. The explicit form of
f (w,w′) in lowest order is

f (w, w̄) = αw − β|w|
2w , (4.8)

where the complex-valued coefficients α and β satisfy

α = vL̂1u ,

β = − 3vn3(u, u, ū) + 4vn2

(
u, L̂

−1
0 n2(u, ū)

)
+ 2vn2

(
ū, (L̂0 − 2iω0I)−1n2(u, u)

)
.

(4.9)

I denotes an n-dimensional identity matrix; cf. Eqs. (2.2.17–20) in [12]. The exact derivation with all mathematical details
can be found in Appendix A.2.1.

4.3.2. Poincaré’s reduction via nonlinear transforms
Instead of employing perturbation theory, one can alternatively derive the Hopf normal form via nonlinear transforms,

as already used by Poincaré. We follow closely the line of argument in Kuznetsov’s textbook [Chapter 3, 82] and consider
the dynamics ẋ = f (x;µ) as in the previous subsection. To simplify notation, we restrict our case to only two real
dimensions x = (x, y), x′

= (x′, y′) ∈ R2.14 As usual, for µ = 0 the fixed point x = 0 undergoes a supercritical Hopf
bifurcation. We can decompose f into a linear and nonlinear part,

f (x) = L(µ)x + F (x;µ) ,

where L(µ) = ∇f (x;µ)
⏐⏐
x=0 has eigenvalues λ(µ) = ϱ(µ) ± iω(µ) that satisfy ϱ(0) = 0 and ω(0) = ω0 > 0. The goal is

then to rewrite the dynamics in a generic form (4.4) and to provide an instruction how to determine the corresponding
complex-valued parameters with a sequence of near-identity transformations. The transformation of f (x;µ) into the
desired Hopf normal form α(µ)w − β(µ)|w|

2w can finally be achieved using the strategy sketched below. We refer to
Appendix A.3 for all mathematical details. In brief:

(i) We write the dynamics ẋ = f (x;µ) in complex form

ż = λz + f̃ (z, z̄;µ) , (4.10)

where the transformation x ∈ R2
↦→ z ∈ C in the complex plane is determined by the eigenvectors of the Jacobian

L.

14 A straightforward extension to n-dimensional dynamical systems using a projection method can be found in [Chapter 5, 82].
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(ii) Provided that the right-hand side of (4.10) can be approximated in polynomial from up to third order, that is,

ż = λz +

∑
2≤k+l≤3

fklzkz̄ l + O4(z) ,

we can achieve the Hopf normal form for a single oscillator ẇ = λw−β|w|
2w+O4(w) via a Poincaré transformation,

i.e. a nonlinear near-identity coordinate transform

z = ψ(w) = w +

∑
2≤k+l≤3

hklw
kw̄l . (4.11)

The coefficients hjk depend on λ and the fkl and can be identified through introducing a local inverse transform and
a subsequent comparison of coefficients, see Appendix A.3.

Note that there is a prevailing and inherent dependence of all coefficients on the bifurcation parameter µ. Evaluating
the resulting formulas at the bifurcation point, µ = 0, reveals the similarity to the reductive perturbation approach,
cf. Section 4.3.1. For instance, we can determine the parameter β(0) = β(µ = 0) that relates to the cubic term in the
normal form as

β(0) = −
i

2ω0

(
f20f11 − 2|f11|2 −

1
3 |f02|

2)
−

1
2
f21 .

This closely resembles equation (4.9) in Section 4.3.1.

4.3.3. Takens’ reduction via Lie brackets
This admittedly more abstract, yet frequently used technique to compute the Hopf normal form has been introduced

by Leung and co-workers [116,117] but is coined according to Takens’ corresponding work [84]. The approach belongs to
the class of the so-called matrix representation methods. It allows for determining arbitrary higher-order Hopf normal
forms, though the resulting normal form is of the same order of accuracy as the reductive perturbation technique in
Section 4.3.1.15 We again start off with dynamics ẋ = f (x;µ) in the vicinity of the fixed point x = 0 with |µ| ≪ 1
sufficiently small. After diagonalizing the Jacobian L(µ) = ∇f (x;µ)

⏐⏐
x=0 = Df (x;µ)

⏐⏐
x=0 evaluated at µ = 0, one finds the

dynamics in Jordan normal form

ż = Jz + F (z) , (4.12)

with J = diag(λ1, . . . , λn), where λj ∈ C, j = 1, . . . , n, are the complex eigenvalues of L(0), and F comprises all nonlinear
terms in z . The goal is to establish a transformation

z = P(w) = w + p(w) (4.13)

that removes all irrelevant terms (up to a given order) from the Taylor series of

ẇ = (DP(w))−1 [JP(w) + F
(
P(w)

)]
. (4.14)

The transformation (4.13) is nearly-identical due to its linear part. We expand the nonlinear function F (z) as a series of
homogeneous polynomials

F (z) = F 2(z) + F 3(z) + · · · + F r (z) + Or+1(z) , F k ∈ Pk , (4.15)

where r ∈ N and Pk is the set of homogeneous polynomials of order k, and introduce an adjoint operator LJ :Pk → Pk via

LJ (Y )(z) = [Y , Jz] (z) = JY (z) − (DY (z))Jz , (4.16)

where [·, ·] denotes the Lie bracket [84]. With this definition one can immediately use Takens’ normal form theorem [75,84,
116]: Given a system ż = Jz+F (z) of differential equations, where F = F 2+F 3+. . . as in (4.15) is truncated at order r and
F (0) = 0, choose a complement Hk of LJ (Pk), such that Pk = LJ (Pk)⊕Hk. Then, there is an analytic change of coordinates
in a neighborhood of the origin which transforms the system above to ẇ = h(w) = h1(w) + h2(w) + · · · + hr (w) + Rr
with h1(w) being the linear term and hk ∈ Hk for k = 2, . . . , r , and residual Rr = Or+1(w). The proof of this theorem is
constructive and by induction, using a series of coordinate transforms z = w + pk(w) with pk homogeneous polynomials
of degree k with k = 1, . . . , r . The coefficients of pk are to be determined in each step such that

F k(w) + LJ (pk)(w) ∈ Hk . (4.17)

Details of the proof and further examples can be found in [75,77,78,84,116,117].16 Since we address classical, first-level
normal forms only, the entire transformation procedure is based on the Jacobian, that is, on the linearized dynamics near

15 The technique presented here applies only to vector fields that have a single zero eigenvalue or a single pair of purely imaginary eigenvalues [75].
Moreover, we restrict the theory to the semi-simple case only, that is, the dynamics have a diagonizable linear part.
16 J is semi-simple, so the complement Hk will be chosen as Hk = ker

(
LJ (Pk)

)
as mentioned above. In this case, a direct calculation shows that

Hk is spanned by all resonant monomials of order k for each k ≥ 2, from which (4.3) follows.
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the bifurcation point. If the bifurcation possesses certain symmetries, they become apparent in the Jacobian and are thus
induced on the nonlinear part of the computed normal form. In particular, systems near a Hopf bifurcation are mapped
by a polynomial transformation to a normal form that has circular symmetry.

A practical application of this computational approach to a two-dimensional system z = (z1, z2) near the Hopf
bifurcation can be found in Appendix A.4 including further mathematical details. Unfortunately, the complexity of
computing the coefficients for higher-order normal forms increases rapidly as the determination of parameters builds
recursively upon each other and on the lower-order near-identity transformations pk, k ≤ 4. It hence becomes necessary
to implement efficient algorithms in symbolic computation software. An arithmetic algorithm including the computation
of normal forms up to order eleven has been presented in [117].

4.4. Example: Phase reductions of a single oscillator in Hopf normal form

The general Mth-order Hopf normal form of a single oscillator in the vicinity of a (supercritical) Hopf bifurcation has
been introduced in (4.4). It reads

ẇ = f (w;µ) =

M−1∑
m=0

(−1)mσm|w|
2mw + O2M (w) , w ∈ C ,

with complex-valued coefficients σm = σm(µ) ∈ C and bifurcation parameter µ ∈ R indicating the distance to the Hopf
bifurcation at µ = 0. The complex-valued variable w ∈ C can be written in polar coordinates (R, θ ) as w = Reiθ , or in
planar coordinates x = (x, y) ∈ R2 as w = x + iy. The amplitude, or radius, R ≥ 0 and angle θ ∈ S1 satisfy R =

√
x2 + y2

and θ = tan−1(y, x) with tan−1 the quadrant-corrected inverse tangent. The Hopf normal form (4.4) in polar coordinates
reads

Ṙ =

M−1∑
m=0

(−1)mumR2m+1
= R · ℜ , θ̇ =

M∑
m=0

(−1)nvmR2m
= ℑ , (4.18)

with σm = um + ivm and real-valued um, vm ∈ R, where we abbreviated

ℜ =

M−1∑
m=0

(−1)mumR2m , ℑ =

M∑
m=0

(−1)nvmR2m .

The corresponding planar dynamics of (4.4) reads

ẋ =

(
ℜ −ℑ

ℑ ℜ

)
x . (4.19)

In (4.18) the radial dynamics Ṙ decouples from the angular dynamics θ̇ . If the parameters σm = um + ivm are such that Ṙ
has a stable non-trivial solution Rc , then there exists a T -periodic circular limit-cycle solution of (4.4),

wc(t) = xc(t) + iyc(t) = Rceiθ
c
, or xc(t) =

(
xc(t)
yc(t)

)
= Rc

(
cos θ c

sin θ c

)
with constant radius Rc and constantly increasing phase θ c(t) = ωt + θ0. The period T = 2π/ω is defined through
the frequency ω. Note that both Rc and ω depend on the normal form coefficients σm or (um, vm), respectively, with
m = 0, . . . ,M − 1.17 Without loss of generality, we set θ0 = 0 so that θ c is uniquely defined through the frequency ω.

Winfree’s reduction via isochrons
As mentioned above, Winfree’s reduction via isochrons heavily depends on whether explicit expressions of the limit

cycle C and the asymptotic phase map Θ along the isochrons are available. For an oscillator in Hopf normal form (4.4) of
second order, M = 2, this is indeed the case. Expressed in polar coordinates, (4.18) has a globally attracting limit cycle

wc(t) = Rceiωt

with radius Rc
=

√
c2 and frequency ω = v0 − v1c2 with c2 = u0/u1. The asymptotic phase map θ = Θ(w) defined in

Section 2.1 for x = (Re(w), Im(w)) in R2
\ {0} fulfills θ̇ = ω. Its explicit form reads

Θ

(
w = Reiφ

)
= argw −

v1

u1
ln
⏐⏐⏐ w
wc

⏐⏐⏐ = φ −
βI

βR
ln
⏐⏐⏐ R
Rc

⏐⏐⏐ .
17 For second order Hopf normal forms, i.e. M = 2, Rc

=
√
u0/u1 and ω = v0 − u0v1/u1 if u0, u1 > 0. For third order, M = 3, Rc > 0 solves

u0 − u1R2
+ u2R4

= 0 if u0, u1, u2 > 0 and u2
1 − 4u0u2 ≥ 0. The frequency ω then depends on u0, u1, u2, v0, v1, v2 .
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The phase sensitivity function Z(θ ) =
(
Zx(θ ), Zy(θ )

)
= ∇Θ(w)

⏐⏐
w=wc is the gradient of the phase map Θ evaluated at the

limit cycle wc . For infinitesimally small and pulse-like perturbations p = xp + iyp, we can compute Z also via the phase
response function G(θ, p = xp + iyp) = Θ(wc(θ ) + p) − θ according to (2.10) as

Z(θ ) =

(
Zx(θ )
ZY (θ )

)
=

(
∂xG(θ, p)
∂yG(θ, p)

)
xp=yp=0

The explicit forms of Z(θ ) ∈ R2 as well as of the corresponding complex-valued form Z(θ ) = Zx(θ ) + iZy(θ ) are

Z(θ ) =
1
Rc

(
− sin θ − c2 cos θ

−c2 sin θ + cos θ

)
and Z(θ ) =

−c2 + i
Rc eiθ . (4.20)

Kuramoto’s reduction via Floquet eigenvectors
Despite the simplicity of Winfree’s reduction via isochrons, deriving the explicit form for the asymptotic phase map Θ

becomes challenging already for Hopf normal forms (4.4) beyond second order. Alternatively, one can use Kuramoto’s
reduction via Floquet eigenvectors to derive the phase sensitivity function Z . In view of (3.2), we therefore have to
determine v0 and S(t). To do so, we consider a stable limit cycle solution wc(t) = Rceiωt in the polar coordinate dynamics
(4.18) as before. By introducing a small deviation z(t) off the limit-cycle trajectory wc(t) as w(t) = wc(t) [1 + z(t)], the
linearized dynamics of (4.18) satisfies

ż =

(
M−1∑
m=0

(−1)m(um + ivm)(Rc)2mm

)
(z + z̄) + O2(z) =: (ςR + iςI )(z + z̄) + O2(z) . (4.21)

Separating real and imaginary parts in terms of z = ξ + iη, we can simplify (4.21) in matrix form as

d
dt

(
ξ

η

)
= Λ

(
ξ

η

)
where Λ = −2ςR

(
1 0
c2 0

)
(4.22)

with c2 = ςI/ςR. Usually, c2 = cM2 depends on the order of the Hopf normal form.18 The eigenvalues of Λ are λ0 = 0 and
λ1 = −2ςR with corresponding left and right eigenvectors

u0 = Rcω

(
0
1

)
, u1 =

(
1
c2

)
,

v0 =
1

Rcω
(−c2, 1), v2 = (1, 0);

(4.23)

the factor Rcω is for consistency with u0 = ẋc(0). Moreover, we find the matrix S(t) by linking the deviations ξ, η from
wc in the complex plane with deviations u ∈ R2 of the corresponding planar limit cycle solution xc via

u(t) = RcS(t)
(
ξ (t)
η(t)

)
where S(t) =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
. (4.24)

According to (3.2), the phase sensitivity function is given by

Z(t) = ωv0S(t)−1
=

1
Rc

(
− sin(ωt) − c2 cos(ωt)
−c2 sin(ωt) + cos(ωt)

)
(4.25)

By the change of variables t ↦→ θ/ω, we arrive at the same form (4.20) as in the previous paragraph. Interestingly, the
shape of the phase sensitivity function Z(θ ) does not change when incorporating higher order terms in the Hopf normal
form (4.4).

Direct method
The numerically implemented adaptation of the direct method by Novičenko and Pyragas builds on the same theoretical

concepts as Kuramoto’s reduction via Floquet eigenvectors. The mathematical arguments how to apply this method to an
oscillator in Hopf normal thus coincide with the previous subsection, and result in the same form of the phase sensitivity
function Z .

18 For second (M = 2) and third order (M = 3) Hopf normal forms

ω̇ =

M−1∑
m=0

(−1)mσm|ω|
2mω , with σm = um + ivm ,

we have

c22 =
v1

u1
, and c32 =

v2

u2

(
1 − u1

[
u2
1 − 4v0u2

]−1/2
)

+ v1
[
u2
1 − 4u0u2

]−1/2
.
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Adjoint method
The adjoint method reveals the phase sensitivity function Z as the unique solution to the adjoint problem (3.4)–(3.6).

For an oscillator in Hopf normal form (4.4), it is convenient to consider the dynamics in polar coordinates (4.18), which
we write as

dR
dt

= G(R),
dθ
dt

= H(R) . (4.26)

This is the typical polar coordinate representation of λ − ω systems [48,118]. The corresponding adjoint problem reads
in the general form

d
dt

(
∂
∂RΘ

(
xc(t)

)
∂
∂θ
Θ
(
xc(t)

)) = −L(t)⊺
(

∂
∂RΘ

(
xc(t)

)
∂
∂θ
Θ
(
xc(t)

)) (4.27)

where L(t) = ∇f (x)
⏐⏐
x=xc (t) as before. In polar coordinates, we have

L(t)⊺ =

(
G′(Rc) H ′(Rc)

0 0

)
where the prime denotes differentiation with respect to R. A solution to (4.27) is given by(

∂
∂RΘ

(
xc(t)

)
, ∂
∂θ
Θ
(
xc(t)

))
=

(
−

H ′(Rc )
G′(Rc ) , 1

)
. (4.28)

Transforming (4.28) back into Cartesian coordinates (x, y) = (R cos θ, R sin θ ), the phase sensitivity function becomes

Z(θ ) =
1
Rc

(
− sin θ − c2 cos θ
−c2 sin θ + cos θ

)
, (4.29)

with c2 = cM2 = RcH ′(Rc)/G′(Rc). For instance, considering the second order Hopf normal form, M = 2, we have
Rc

=
√
u0/u1 and

c22 = Rc −2v1Rc

u0 − 3u1(Rc)2
=

−2v1
−2u0

u0

u1
=
v1

u1
,

as already found in the previous paragraphs.

Haken’s reduction via averaging
As Haken’s reduction method dwells on averaging over one cycle, this method is not appropriate for deriving the phase

sensitivity function Z . Averaging over a pulse-like perturbation p cannot lead to a meaningful result. However, the method
becomes more effective when reducing the phase dynamics of weakly coupled oscillators, as averaging is inherent to the
framework of weak coupling.

5. Phase description of an oscillator network

The characterization of complex networks has attracted a literal boost of attention in recent decades [119–126]. In
general, and as mentioned in the Introduction, complex networks can be characterized with respect to their structure and
dynamics [127–129]. The structure of a network refers to its underlying topology, that is, the connectivity between the
elements, or nodes, of the network [130]. Typically, statistical indicators such as, e.g., the degree distribution, shortest
path length, clustering, assortativity, or modularity, are used to describe the structural properties of a network [131].
Noteworthy, the network structure has a non-trivial effect on the network dynamics [132]. And, it can also change over
time [133,134]. The dynamics of complex networks, on the other hand, refers to dynamical processes of the individual
nodes, the (dynamic) interaction between these nodal dynamics, and the emergent collective dynamics on the (global)
network level [23,135–138]. This report focuses on the dynamics of complex oscillator networks, where we assume the
dynamics of each node to be oscillatory. For simplicity, we further assume the network structure to be given and static
over time. When speaking about the macroscopic dynamics, i.e., the collective behavior of a network, we here refer to
the emergence of collective phenomena and large-scale organization through the particular dynamics of each node and
between nodes [20,23,88,139,140]. It is convenient to introduce macroscopic variables, or observables, that characterize
the collective behavior. One example of such an observable is the Kuramoto order parameter [12], which will be introduced
in more detail below. Its absolute value is a real number between 0 and 1, which indicates the degree of similarity, or of
synchronization, between the phases of the oscillatory nodes. Naturally, it is possible to adapt and use other statistical
indicators, e.g., the clustering coefficient, for assessing not only the structure [141], but also the (dynamical) collective
behavior of a network. This allows for a more detailed description of how similar the dynamical (micro-) processes of
different nodes are. E.g., one can distinguish between particular groups, or clusters, of nodes that share similar dynamical
features within each group, such as having the same phase dynamics, but these phase dynamics differ from those of the
other groups [142–145].

Can the results and insights about the phase description of a single oscillator be applied and extended to multiple
interacting oscillators? The subsequent sections are devoted to answer this question. Not only we will present different
techniques to derive the phase dynamics of an oscillator network. But we will also pinpoint limitations and pitfalls of the
existing theory.
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5.1. Networks of coupled oscillators

We assume that the network consists of N ≫ 1 nodes, whose dynamical state is given by the vector xk = xk(t) ∈ X ,
k = 1, . . . ,N , where X ⊂ Rn is an n-dimensional state space. The evolution of the state vector is governed by the
dynamical system ẋk = Fk(x1, . . . , xN ;µk), which shall be of the form (1.1),

ẋk = f k(xk;µk) + κgk (x1, x2, . . . , xN) .

The vector field Fk = Fk(x1, . . . , xN , t), and hence also f k = f k(xK , t) and gk = gk(x1, . . . , xN , t), may explicitly depend
on time t . For the sake of conciseness, however, we consider here only autonomous individual dynamics f k and state-
dependent coupling gk without further time variations and refer to Section 10 for a corresponding discussion. Assuming
nearly identical oscillators and a pairwise coupling structure, leads to the dynamics (1.2),

ẋk = f (xk;µ)+ κ

N∑
j=1

gkj
(
xk, xj

)
.

This is similar to the dynamics (2.2) of a single oscillator with additive perturbations p, but we replaced p by the sum over
all pairwise coupling terms gkj

(
xk, xj

)
with the respective other oscillators xj, j ̸= k. As before, the parameter µ ∈ R is a

general bifurcation parameter that we will drop whenever possible. The parameter κ ∈ R denotes the coupling strength
and scales the coupling/interaction between oscillators.

Analogously to Section 2, the goal is to identify the (presumably) high-dimensional state xk of each individual oscillator
by a one-dimensional phase variable θk and describe the corresponding phase dynamics. A phase reduction of an oscillator
network is, however, arbitrarily more intricate than that of a single oscillator. The reason for this intricacy is twofold: First,
the phases of all oscillators have to be determined simultaneously. And second, the coupling term(s) do not only depend
on the phase, or phase sensitivity function, respectively, of only one oscillator, but on the phases of multiple oscillators.
In consequence, deriving the phase dynamics of an oscillator network can be a laborious undertaking. So, why should we
bother such an endeavor? Besides referring to the phase dynamics, there exist other ways to determine whether coupled
oscillators synchronize or not. Synchronization, moreover, is but one of many possible network states. If, for instance, one
is interested in the character of collective oscillations emerging from a network of coupled dynamical elements, there is
a range of phase reduction approaches to derive the dynamics of a global (macroscopic) phase variable and to predict
the robustness of such collective oscillations with respect to perturbations of individual nodes of the network [146–163].
Nonetheless, deriving the phase dynamics of each oscillatory node of the network including the corresponding coupling
dynamics between them, reveals invaluable information about the whole network, from which also the state of the
network can readily be inferred. In addition, individual parameters of the underlying dynamics can be identified, e.g., for
playing a key role in synchronization mechanisms, or leading to clustering effects in particular parts of the network. Such
insights are crucial when control schemes are to be applied to promote or prevent synchrony.

In the following subsections, we will present the ideas behind phase reduction of an oscillator network and how the
reduced phase dynamics can be used to identify and predict network states and collective dynamics. In the next Section 6
we provide more details about various techniques of the actual phase reduction of an oscillator network.

5.2. Phase dynamics of oscillator networks

The phase model (2.12) can be extended to a network of oscillators x1, . . . , xN with dynamics (1.2). Assuming identical
oscillators, in the uncoupled case, i.e. for κ = 0, each of the systems ẋk = f (xk) has the same hyperbolically stable limit
cycle C with period T > 0 and frequency ω = 2π/T . Starting again with defining phase variables θk according to the
isochron condition (2.7) and following the same reasoning as in the single oscillator case, we end up with

θ̇k = ω + κ Z (θk)·
N∑
j=1

gkj(θk, θj) ; (5.1)

here, we abbreviated gkj(θk, θj) = gkj(xc(θk), xc(θj)). The dynamics (5.1) directly corresponds to (2.12), but has now been
extended to an oscillator network and the perturbation p has been replaced by (the sum over) the coupling terms gkj. For
the derivation of (5.1) we again assumed that the oscillators xk are not moved too far away from their respective limit
cycles C through the coupling. This guarantees that we can approximate the dynamics by their respective values on the
limit cycle, that is, xk(t) ≈ xck(t) for all k = 1, . . . ,N .

Weak coupling and averaging. If the coupling is sufficiently weak, one can make use of averaging. For this, we introduce
relative phase variables φk via

θk = φk + ωt , (5.2)
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so that the φk denote deviations from the natural (unperturbed) dynamics along the limit cycle with frequency ω. The
relative phases φk can be found to evolve slowly in time according to

φ̇k = κ Z (φk + ωt) ·

N∑
j=1

gkj
(
φk + ωt, φj + ωt

)
(5.3)

with 0 < κ ≪ 1. Due to the weak coupling assumption, the slow dynamics (5.3) of the relative phases φk capture the
effects of the coupling entirely. In order to apply averaging properly, the phases φk have to be slow variables such that
they do not vary (significantly) within a period. In fact, the smallness of κ implies not only that φk are slowly varying – by
contrast, the term ωt varies rapidly with time –, but also that the coupling can only have small effects on an oscillator’s
dynamics over any given period T = 2π/ω. Still, these small effects can accumulate over time and lead to, e.g., phase
synchronization in the network. Suppose that all oscillators get synchronized at some point. This synchronized state will
be sustained over times of order 1/κ , which, for κ small, is assumed to be longer than any other characteristic timescale
in the dynamics. During this time, the term ωt will undergo a large number of changes, which is of order ω/κ . Hence,
over one period T , the φk can be expected almost time independent. Then, one can average the right-hand side of (5.3)
over one period T by considering φk to be constant (with respect to the integral over T ); to make this averaging procedure
more rigorous by averaging theory, see, e.g., [55,75]. Combining the averaged dynamics with (5.2), yields the sought-for
phase dynamics (1.3) in the ordinary phase variables θk,

θ̇k = ω + κ

N∑
j=1

Hkj(θk − θj) ,

with the phase interaction function

Hkj(ψ) =
1
2π

∫ 2π

0
Z(ϕ + ψ)·gkj(ϕ + ψ, ϕ) dϕ . (5.4)

More detailed derivations can be found in, e.g., Kuramoto’s seminal book [Chapter 5, 12] or Ermentrout and Terman’s
textbook [Chapter 8.3, 48]; see also the recent reviews by Schwemmer and Lewis [65], by Nakao [164] as well as by
Gherardini, Gupta and Ruffo [165].

In what follows, the network (1.2) and its phase dynamics (1.3) will be our central equations. We will show how to
determine the phase interaction function Hkj as given in (5.4).

5.3. Collective behavior

The emergence of collective dynamics of a network can be captured by appropriate observables. What is more, the form
of the previously introduced phase interaction function(s) Hkj can indicate whether two or more interacting oscillators
synchronize and form clusters. We here present conventional observables to describe various kinds of collective behavior
and highlight the link to the phase interaction function.

To begin, we introduce slightly simplified oscillator network dynamics and their corresponding phase dynamics,
considering a pairwise coupling structure. That is, rather than the general form of coupling as in (1.2), we use

ẋk = f (xk;µ) +
κ

N

N∑
j=1

Ckjg(xk, xj) (5.5)

with connectivity matrix C =
{
Ckj
}
k,l.

19 The pairwise coupling structure in (5.5) leads to the phase dynamics

θ̇k = ω +
κ

N

N∑
j=1

CkjH
(
θk − θj

)
, (5.6)

where H is the phase interaction function. Comparing (5.6) with (1.3), we have replaced Hkj with CkjH . Obviously, we
have to determine the phase interaction function H only once and not for each pair of oscillators separately as in (5.4).
Moreover, the function H is periodic with period T = 2π/ω. Hence, it can be expressed as a Fourier series

H(ψ) =

∑
n≥0

an cos(nψ) + bn sin(nψ) . (5.7)

The (number of) Fourier components an and bn insinuate the ‘degree of complexity’ in the phase dynamics. As will be
shown below, the first harmonics (n = 1) play a dominant role for the synchronization behavior of the oscillator network.
Including higher harmonics (n > 1) may give rise to clustering of phases, or even to switching behavior between clusters.

19 If the coupling, or connectivity, matrix C has only binary entries, Ckj = 0 or 1, it is also referred to as adjacency matrix.
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5.3.1. Synchronization
Synchronization alludes to the correlated, coherent dynamics of individual oscillators. Synchronous collective behavior

is opposed to uncorrelated, incoherent behavior of the various single oscillators. In case of two coupled oscillators 1 and
2 with C12 = C21 = 1, the conditions for synchronization can be stated explicitly. If the oscillators have identical natural
frequencies, ω1 = ω2, if the frequency mismatch∆ = ω1−ω2 vanishes, then the oscillators will synchronize in-phase with
θ1(t) = θ2(t) for large enough t . In fact, when defining Γ (ψ) = H(ψ) − H(−ψ) as the odd part of the phase interaction
function H , that is, Γ (ψ) = 2

∑
n≥1 sin(nψ), and ψ := θ1−θ2, one finds ψ̇ = ∆+κΓ (ψ) = κΓ (ψ). The resulting in-phase

synchronized solution ψ = 0 is stable for κΓ ′(0) = 2κH ′(0) > 0. In this case, the phase model hence exhibits attractive
coupling. On the other hand, the anti-phase solution, ψ = ±π , is stable if κH ′(±π ) > 0. Then one speaks of repulsive
coupling. For non-identical oscillators, ω1 ̸= ω2, i.e. ∆ ̸= 0, phase locking, or mutual synchronization, can be observed as
long as κ minΓ (ψ) < ∆ < κ maxΓ (ψ) holds.

All these properties can be extended to networks of more than two coupled oscillators. We consider positive coupling
strengths κ > 0 from now on, unless stated otherwise. If H(ψ) only consists of first harmonics, i.e. a1, b1 ̸= 0 but
an = bn = 0 for all n > 1, we retrieve the Kuramoto–Sakaguchi model

θ̇k = ωk − κ

N∑
j=1

sin
(
θk − θj + α

)
(5.8)

with phase lag parameter α ∈ R. In the previous notation of (5.7), we have Ckj = −1 for all k ̸= j. The special case
α = 0 yields the classic Kuramoto model, for which a1 = 0 and b1 > 0. By construction, the Kuramoto model ‘only’
features attractive coupling. Also, the more general Kuramoto–Sakaguchi model (5.8), whose phase interaction function
H is commonly written as H(ψ) = A sin(ψ + α), exhibits attractive coupling20 for |α| ≤ π/2. In networks of identical
and globally coupled oscillators, the strength of (attractive) coupling can be minimal to let the network synchronize. For
non-identical oscillators, the heterogeneity in the natural frequency terms tends to suppress synchronization. Yet, when
the coupling exceeds a critical value, a transition to collective synchronization can be observed [12,73].

Stability of the synchronized solution. A convenient approach to assess the network behavior of identical, coupled systems,
not necessarily phase oscillators, is based on the master stability function (MSF) formalism [166]. The MSF approach is used
to determine the stability of the fully synchronized state in terms of the eigenstructure of the connectivity matrix C , see
also [167]. For the phase model θ̇k = ω + κ

∑
j CkjH(θk − θj), we are interested in the stability of the synchronous state

θk = θ for all k, that is, θk−θj = 0 for all j ̸= k. Given that close to full synchrony the phase differences tend to be small, we
can expand H around the origin and find at first order H(θk −θj) ≈ H ′(0)[θk −θj]. Writing the phase model in vector form,
one can find the Jacobian Ĥ at the synchronous state Θ0 = (θ, . . . , θ ) with entries Ĥkj having graph-Laplacian structure
Ĥkj = κH ′(0)

(
Ckj−δkj

∑
l Ckl

)
. The (linear) stability of the synchronous state here depends on the eigenvalues of Ĥ . We note

that one eigenvalue is always zero. If the network is globally coupled, i.e., Ckj = 1 for all j, k, the synchronized state is stable
if κH ′(0) > 0 and unstable if κH ′(0) < 0, cf. [168]. Nicosia and co-workers recently used a similar approach to investigate
the mechanisms behind remote synchronization behavior [169]. When full synchronization cannot be achieved, network
symmetries play a crucial role in establishing functional modules, which do not even require structural connectivity as
represented in the connectivity matrix Ckj.

5.3.2. Order parameters, observables, and mean field-driven dynamics
Kuramoto order parameter. The degree of network synchronization is commonly measured in terms of the complex
Kuramoto order parameter defined as

ReiΨ =
1
N

N∑
k=1

eiθk . (5.9)

The modulus R and the complex argument Ψ represent the amplitude and (mean) phase, respectively, of collective
oscillations, that is, of the mean field behavior. R takes values between R = 0, corresponding to a fully incoherent state,
and R = 1, corresponding to complete synchronization of all oscillators. In the continuum limit, N → ∞, and for an
appropriately chosen distribution g(ω) of natural frequencies, the Kuramoto model can be solved analytically and the
real-valued Kuramoto order parameter R undergoes a pitchfork-bifurcation at a critical coupling strength (which depends
on the properties of g) from incoherence to (partial) synchronization, see [12,164,170].

20 We can use trigonometric identities to write a1 cos(ψ) + b1 sin(ψ) = A sin(ψ + α) with A2
= a21 + b21 and α = tan−1(a1/b1). If we fix the sign

of A by imposing A = sgn(b1)[a21 + b21]
1/2 , for b1 > 0 we find α = tan−1(a1/b1) ∈ (−π/2, π/2), and |α| > π/2 for b1 < 0. Hence, the coupling is

attractive whenever b1 > 0. For b1 < 0, the repulsive character of the coupling can be balanced using negative coupling strengths κ < 0, so that
κA > 0. With the convention sgn(A) = sgn(a1), however, synchronization cannot occur for κA > 0.
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Microscopic and macroscopic observables. The Kuramoto order parameter is a prime example for a macroscopic observable.
Here, we took the network average over the different microscopic states. Due to averaging, macroscopic observables are
usually more regular than microscopic ones. This is in particular true for very large networks. In a more rigorous way,
we can define macroscopic observables as (averaged) properties of the network. To do so, one describes the state of the
network by a distribution function of the microscopic variables. In the case of an oscillator network, the main property of
interest is the (time-varying) distribution ρ of phases θk(t) of the oscillators, that is, ρ = ρ(θ, t). Such a distribution can
be discrete when the network size N < ∞ is finite, or continuous in the limit N → ∞. We can define a typical microscopic
observable by identifying each oscillator (with phase θ ∈

[
0, 2π

]
) as a point z ∈ C on the complex unit-circle, that is,

z = eiθ is a complex-valued microscopic observable. A first macroscopic observable is the mean, or expectation, value21∫
|z|=1

ρ(z, t)zdz =

∫ 2π

0
ρ(θ, t)eiθdθ (5.10)

of the microscopic observables. This macroscopic observable (5.10) is the continuous formulation of the Kuramoto order
parameter (5.9), which justifies the nomenclature that the macroscopic variables R and Ψ define the mean field behavior.
Naturally, one can generalize (5.10) and consider the (complex) amplitudes of higher Fourier modes

Zm =

∫ 2π

0
ρ(θ, t)eimθdθ ,

which are typically referred to as Kuramoto–Daido order parameters; m = 1 again leads to the Kuramoto order parameter
Z1 = ReiΨ . In fact, Zm are the moments

⟨
(eiθ )m

⟩
of the microscopic observables eiθ . It may also be convenient to consider the

corresponding circular cumulants as alternative macroscopic observables, see, e.g., [171] for more details. For our purposes,
however, it will suffice to use either the Kuramoto order parameter, or to consider the full distribution density of phases
ρ(θ, t) when a simple network average does not reveal the sought-for information. This can be the case, e.g., when multiple
cluster states emerge.

Mean field-driven dynamics. When assessing the network behavior, it is often convenient to rewrite the phase model (5.6)
& (5.7) in the form of a single oscillator that is driven by the mean field variables R(t) and Ψ (t):

θ̇k = ωk + κ
∑
n≥0

an(R) cos(Ψ − θk) + bn(R) sin(Ψ − θk) . (5.11)

Here the Fourier amplitudes an, bn now depend on R. Note that this dependence on the mean field can also be nonlinear,
which may lead to non-trivial collective behavior.

In [172–174], Rosenblum and Pikovsky investigated a form of the Kuramoto–Sakaguchi model (5.8) where a1 and b1
depended on both R and R3. Due to this nonlinear coupling, a self-consistent partial synchrony solution can arise with
0 < R < 1 at the border between stability and instability domains for the synchronous state. They reported a mismatch
between the time-average frequencies of the oscillators and the frequency of the mean field, which they called self-
organized quasiperiodic solutions. This mismatch is an essential property of partial synchrony in that microscopic and
macroscopic dynamics differ from one another. Detecting these quasiperiodic states requires a more careful inspection
of the network behavior than considering only the (averaged) evolution of the Kuramoto order parameter. Evaluating
Poincaré sections can hint at the quasiperiodic character of the mean-field solution, as has been proposed by Rosenblum
and Pikovsky [172], but also studying the evolution of the (instantaneous) phases θ in terms of their distribution ρ(θ, t)
may shed light on the actual, no longer trivial collective dynamics.

5.3.3. Clustering, chaos and higher harmonics
Cluster states can be viewed as a generalized form of synchronous behavior. Considering a network of N > 1 coupled

oscillators, then the asynchronous state (corresponding to a vanishing Kuramoto order parameter, R = 0) is characterized
by N (independent) groups, or clusters, of one oscillator each. By contrast, the fully synchronized network state (R = 1)
features a single cluster of N oscillators. Both the structure and dynamics of complex networks can lead to clustering
effects. The number M ∈ {1, 2, . . . ,N} of clusters can be static, or change over time. Moreover, one speaks of balanced
cluster states when every cluster consists of the same number of elements. A particular and noteworthy dynamic network
state is called a heteroclinic cycle. Given a balanced M-cluster state, heteroclinic cycles can be defined as a slow switching
behavior of individual oscillators between two clusters. As illustrated in Fig. 5.1 (panel a) for M = 2, slow switching is
characterized by spontaneous decreases of the real-valued Kuramoto order parameter (top panel).

Cluster states may emerge in oscillator networks already for trivial topology, such as a global (all-to-all) coupling
structure, when there are higher harmonics in the phase model. Higher harmonics can also increase the variety of
non-trivial network behavior beyond clustering behavior. A first example of higher harmonics in the phase model is a
biharmonic phase interaction function H with non-vanishing first and second harmonics, i.e. an, bn ̸= 0 for n = 1 and
n = 2. The occurrence of balanced two-phase-cluster states is then expected, and has frequently been reported [175–
177]. What is more, one can indicate stability boundaries for cluster states according to the eigenvalues associated with

21 Here we use the integral sign as a generalization of the (possibly discrete) sum over oscillator states.
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Fig. 5.1. (a) Slow switching between two clusters in a network of N = 1000 biharmonically coupled phase oscillators. (b) Oscillating three-cluster
state for N = 30 identical phase oscillators with phase interaction function H(ψ) =

√
2 sin(ψ + π/4) − 0.09 sin(2ψ) + 0.16 sin(3ψ) − 0.09 sin(4ψ) −

0.03 sin(5ψ) − 0.06 sin(6ψ). Top panels: time evolution of the real-valued Kuramoto order parameter. Bottom: time evolution of the individual
phases.

intracluster and intercluster perturbations, respectively. The eigenvalues for intracluster perturbations can be computed by
λintran =

∑
∞

k=1 bkn yielding the values for synchronized (one-cluster, λintra1 ) and balanced two-cluster solutions (also called
anti-phase cluster, λintra2 , λinter2 ) as λintra1 = H ′(0), λintra2 =

1
2

(
H ′(0) + H ′(π )

)
, and λinter2 = H ′(π ). Hence, the biharmonic

phase model will feature:

(i) global synchrony for κb1 > 0,
(ii) a balanced two-cluster state if κb1 < 0 and κb2 > 0,
(iii) heteroclinic cycles if κb1 < 0, κb2 < 0 and b1 is comparable to b2.

In [178,179] Kori and Kuramoto argued that the slow-switching behavior characteristic for heteroclinic cycles may be
explained as an effective convergence to an unstable unbalanced two-cluster solution. In the same article, the authors
also explored the effect of delay on the robustness of the mechanism. Clusella and co-workers summarized the possible
macroscopic dynamics for identical biharmonically coupled phase oscillators in [180]. There, they also reported self-
consistent partial synchrony solutions, see also the work by Komarov and Pikovsky for an analytic account of the network
behavior for a biharmonic coupling function [181,182].

When further increasing the number of harmonics in the phase interaction function H , even small networks of identical
phase oscillators can display very rich collective behavior in terms of the Kuramoto order parameter R. Even macroscopic
chaos can occur, e.g., when allowing for interaction functions with up to the fourth harmonics [183]. Numerical simulations
may provide more insight into the variety of clustering behavior when more than two harmonics are present; e.g., Okuda
found an oscillating three-cluster state in [175]. While the order parameter dynamics can hint at such non-trivial network
behavior, it typically fails to provide a clear-cut picture of the (nodal) phase dynamics. The oscillating order parameter in
Fig. 5.1 (panel b, top) does not provide any sign that there are actually three oscillating cluster states as revealed by the
phase time series (bottom). For that reason, it is important to identify the characteristics of the collective behavior first
and subsequently choose an appropriate macroscopic observable that is able to capture the actual dynamics.

6. Phase reduction techniques for an oscillator network

The analysis of the network dynamics of (weakly) coupled oscillators can greatly be simplified by exploiting the reduced
phase dynamics. Despite the reduction of dimensionality and, thus, complexity of the network dynamics, the phase
dynamics can still reveal a detailed picture of rich collective behavior. The loss of information through the simplification
in terms of phase variables, however, has to be minimal. This can only be achieved through a careful phase reduction of
the underlying network dynamics. The main goal of this Section is hence to review the different (network) phase reduction
techniques, to highlight their common features, and to pinpoint their differences. By that we hope to clarify the view on
this rather complex challenge of network phase reduction and to aid unifying the concepts and languages from different
disciplines.

We will capitalize on the three basic assumptions on the network of coupled oscillators as outlined in the Introduction:

(1) The network is weakly coupled , i.e. the coupling strength κ ≪ 1 is sufficiently small.
(2) The oscillators are nearly identical, i.e. the node-specific dynamics can be written as f k = f + εf̃ k for some small

fluctuations f̃ k with |ε| ≪ 1; these fluctuations will be subsumed into the term κgk.
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(3) The coupling structure is pairwise, i.e. the coupling function can be decomposed into the sum of pairwise
interactions, unless stated otherwise.

By virtue of these assumptions, the underlying network dynamics is given by (5.5),

ẋk = f (xk;µ)+ κ

N∑
j=1

Ckjg
(
xk, xj

)
.

The network phase reduction then aims at establishing the phase model (5.6),

θ̇k = ω + κ

N∑
j=1

CkjH
(
θk − θj

)
,

where the natural frequency ω is defined through the function f , whereas the phase interaction function H depends on
both f and g . There is, indeed, a robust mathematical theory that guarantees the reduction of (5.5) into (5.6). This is the
theory of weakly coupled oscillators and dwells on Malkin’s Theorem, which we will state below. In particular, assumptions
(1) and (2) have to be fulfilled for Malkin’s theorem to be applied. The pairwise coupling structure, assumption (3), is
not necessarily required but eases the subsequent presentation of (network) phase reduction techniques as the phase
interaction function H is identical for all pairs (k, j) of oscillators.

6.1. Malkin’s theorem for weakly coupled oscillators

Weak coupling. The notion of weak coupling underlies the mathematical theory of the here presented phase reduction
techniques of oscillator networks. The weakness of the coupling manifests as the coupling strength κ is assumed to be
small. But, how small is small? In fact, the smallness assumption ‘‘κ ≪ 1’’ is a mathematical idealization, which can also be
written in the form ‘‘κ → 0’’. This idealization simplifies the analysis of the network under study to obtain mathematically
rigorous results. Most of the time, the condition κ → 0 of infinitesimal coupling strength can be loosened to the condition
‘‘there is a positive κ0 > 0 such that for all 0 ≤ κ < κ0 the obtained result is true’’. Then again, one can ask: how
small is κ0? The answer crucially relies on the dynamics under investigation, and numeric values can only be provided in
context. Moreover, it is always possible to rescale functions so that the rescaled (maximal) coupling strength κ̃ (κ̃0) can
be smaller or bigger than κ (κ0). Conclusively, the idealized mathematical condition κ ≪ 1 remains a somewhat abstract
assumption [46].

Weakly coupled oscillators. As already said, the oscillator networks that we consider throughout this report exhibit weak
coupling, or connectivity, between nodes. To be precise, the theory of weakly coupled oscillators requires that every node
of the network features stable limit cycle oscillations in the absence of coupling, κ = 0. These oscillations are assumed to
have emerged through a bifurcation in the local dynamics, ẋk = f k(xk;µk), when the control, or bifurcation, parameter µk
crosses a critical value µ̃k. Without loss of generality, the critical value at the bifurcation22 can be set to zero, i.e. µ̃k = 0.
Then, µk ≪ 1, which moreover is assumed small, denotes the distance of the oscillatory dynamics of node k to its
respective bifurcation point. The weak coupling assumption has to ensure that the coupling cannot induce any bifurcation
of the nodal dynamics, that is, 0 ≤ κ ≪ κ0 ≤ mink µk ≪ 1. In case of (nearly) identical oscillators with f k = f for all k,
so that µk = µ, the weak coupling assumption becomes:

0 ≤ κ ≪ µ ≪ 1 .

An inherent assumption necessary for a (meaningful) phase reduction is that the perturbations, or coupling effects, do not
move any oscillator’s trajectory out of the basin of attraction of the respective limit cycle, or bring it close to invariant
structures on the boundary of the basin of attraction, see, e.g., [184].

Taken together, it is widely accepted that the notion of ‘‘weak coupling’’ implies that an oscillator’s intrinsic dynamics
dominates the effects due to coupling at each point in the periodic cycle [65]. Hence, over a period |f (xk)| should be
(at least) an order of magnitude greater than |κgk(x1, . . . , xN )|. For sufficiently small values of κ , the phase model can
then capture the dynamics of the full system quantitatively. Nonetheless, the phase model can often provide qualitatively
correct predictions about the network dynamics also for moderate coupling strengths [57,63,65,185,186].

Malkin’s theorem. Having established a basic understanding of the notion of weak coupling, we present the mathematical
backbone of phase reduction techniques for oscillator networks. The theorem below dates back to the work of Malkin [71,
72], who proved it in rather general terms. Hoppensteadt and Izhikevich adopted the theorem for weakly coupled
oscillators and provided the corresponding proof in [46], thereby following Blechmann [187], Neu [50], Ermentrout and
Kopell [52,53,55]. We here state the theorem in the form for weakly coupled oscillators with identical natural frequencies.
There are, however, extensions for non-identical natural frequencies [46] and for general (not necessarily weakly coupled)
nonautonomous systems having parametrized families of solutions [72,187].

22 In principle, the dynamics can be close to multiple bifurcations. In this case, µ̃k refers to the bifurcation point closest to µk .
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Malkin theorem for weakly coupled oscillators. Consider a weakly connected system of the form ẋk = f k(xk) +

κ gk(x1, . . . , xN ) with xk ∈ Rn for k = 1, . . . ,N such that each equation in the uncoupled system ẋk = f k(xk) has an
exponentially orbitally stable T-periodic solution xck(t) with frequency ω = 2π/T . Let τ = κt be slow time and let φk(τ ) ∈ S1

be the phase deviation from the natural oscillation xck(t), t ≥ 0. Then, the vector of phase deviations φ = (φ1, . . . , φN )⊺ ∈ TN

is a solution to

φ′

k = Hk(φk − φ, κ) , k = 1, . . . ,N , (6.1)

where ′
= d/dτ , the phase vector φk − φ = (φk − φ1, . . . , φk − φN )⊺ ∈ TN , and the function

Hk(φk − φ, 0) =
1
T

∫ T

0
Zk(t) · gk(x

c
1(t + φ1 − φk), . . . , xcN (t + φN − φk)) dt , (6.2)

with Zk(t) ∈ Rn the unique nontrivial T-periodic solution to the linear system

Żk(t) = −

(
∇f k(x)

⏐⏐
x=xck(t)

)⊺

Zk(t) (6.3)

satisfying the normalization condition

Zk(0) · f k
(
xck(0)

)
= ω . (6.4)

The proof of this theorem builds upon a singular perturbation approach and can be found in Appendix A.1; see also [46]
or [65]. Note that the solution Zk(t) to the adjoint problem (6.3) & (6.4) is exactly the phase sensitivity function of oscillator
xk as introduced in Section 2. The mathematical details how the solution of the adjoint problem Z can be related to the
gradient of the asymptotic phase map ∇Θ evaluated at the limit cycle, have been depicted in Section 3.4, see also [64].

Application of Malkin’s theorem. The theorem summarizes the important ingredients for a phase reduction of an oscillator
network. It indicates the (slow) dynamics of phase deviations φk from the natural oscillations xck(t). The full phase
dynamics can be found from (6.1) at first order O(κ) as

θ̇k = ω + κ Hk(θk − θ, 0)

where θ = (θ1, . . . , θN )⊺ ∈ TN . The phase interaction function Hk given in (6.2) coincides with the one previously
introduced in (5.4) when restricting the coupling to only pairwise interactions gk(x1, . . . , xN ) =

∑N
j=1 gkj(xk, xj). Note

that Malkin’s Theorem requires identical natural frequencies ωk = ω for all k, but not necessarily identical oscillators.
Hence, the individual phase sensitivity functions Zk may differ from one another, therefore leading to oscillator specific
phase interaction functions Hk. In case of identical oscillators, however, that is, f k = f for all k, the number of adjoint
problems (6.3) & (6.4) to be solved, cf. also Section 3.4, reduces from N to 1. Eventually, assuming that the coupling
functions gkj coincide up to a connectivity value Ckj, i.e. gkj = Ckjg , we arrive at the desired phase dynamics (5.6),

θ̇k = ω + κ

N∑
j=1

CkjH(θk − θj) .

For a phase reduction of the form above, we have to determine the natural frequency ω of the oscillators, and the phase
interaction function H as the averaged product of the oscillator’s phase sensitivity function Z and the coupling function
g . However, the coupling function g has to be evaluated at the limit cycle xc . It is thus fundamental to know not only the
(approximate) shape of the limit cycle, but the explicit trajectory along the limit cycle.

Numerical vs. analytic phase reduction techniques. Setting up the phase model (5.6), both the phase sensitivity function Z
and the limit cycle trajectory xc(t) need to be known explicitly. Given the latter, one can infer Z along one of the different
phase reduction techniques for a single oscillator as presented in Section 3. Already there we distinguished between
analytic and numerical phase reduction techniques, depending on whether or not explicit expressions of the limit cycle
trajectory and of the linearized dynamics around it can be obtained analytically. The following two subsections will review
numerical and analytic phase reduction techniques for a network of weakly coupled oscillators.

6.2. Numerical phase reduction techniques

Recall that numerical phase reduction techniques can be distinguished between adjoint and direct methods. Both
methods were introduced in detail for a single oscillator, the direct method in Section 3.3 and the adjoint method in
Section 3.4. As Malkin’s Theorem capitalizes on the adjoint method to solve for the phase sensitivity function Z , the
adjoint method is sometimes also referred to as Malkin’s method. Regarding the accuracy of the different methods, either
of them performs equally well given that they exploit the linearized dynamics around the limit cycle as discussed in detail
in Section 3. Storing the numeric values of the limit cycle trajectory is a standard routine, so that the evaluation of the
coupling functions at the limit cycle does neither hamper nor improve the accuracy of either of the numeric methods when
applied to an oscillator network. We tested the algorithms for the direct method against the algorithms of the adjoint
method, using the software packages XPPAUT [97] and MatCont [99] as well as our own adjoint solver implemented

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scholarpedia.org/article/MATCONT
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in Matlab (The Mathworks Inc., Natwick, MA). We found a very good agreement between all methods, such that we
use them interchangeably as ‘‘the’’ numerical method in the following, unless stated otherwise. As a by note, we would
like to remark that XPPAUT has conveniently automatized the computation of the phase interaction function H , which
can, moreover, be decomposed in a Fourier series as in (5.7). Sections 8 and 9 will provide extensive illustrations of the
application and strength of numerical phase reduction techniques.

6.3. Analytic phase reduction techniques

As already discussed in Section 4 for a single oscillator, analytic phase reduction techniques exploit the properties of
an oscillator’s limit cycle behavior in order to establish an explicit link to its phase dynamics. With respect to networks
of the coupled oscillators, analytic phase reduction techniques can be extended to determine the corresponding phase
model explicitly in terms of the underlying model equations. Linking the parameters of the original dynamics to those of
the phase model allows for predicting reliably how specific model parameters shape the phase dynamics of the network.
As we have seen for a single oscillator in Section 4.4, however, only few examples are analytically tractable. A normal
form reduction often has to precede the phase reduction. This normal form reduction has a direct effect on the accuracy
of the analytically obtained phase dynamics.

When considering an oscillator network, normal form reductions become arbitrarily more involved. The transforma-
tions to bring the dynamics of an individual oscillator in a simplified form immediately effect the form of the other
oscillators through the coupling terms. Hence, a normal form reduction has to occur for all oscillators of the network
simultaneously, giving rise to the notion of a network normal form. We focus on networks of (weakly) coupled identical
oscillators as introduced in the assumptions (i)-(iii) above, and concentrate on oscillations that have emerged through a
Hopf bifurcation.

In the first subsection, we introduce a particular case of the network Hopf normal form. The technical details how the
network Hopf normal form can be obtained will be subject of Section 7. Provided that the dynamics of an oscillator
network is given in its network Hopf normal form, the phase dynamics can immediately be deduced. In the second
subsection, we show explicitly how the various phase reduction techniques for a single oscillator introduced in Section 3
can be applied to this simplified network dynamics. We prove that the various phase reduction techniques (including
Haken’s reduction via averaging) result in the same phase model, which will be illustrated below for weakly coupled
oscillators in second order Hopf normal form. The third subsection presents a phase reduction technique for the (full)
network Hopf normal form, which we deem worth reporting for its mathematical elegance.

6.3.1. Hopf normal form of an oscillator network
Extending the notion of Hopf normal form to an oscillator network, we first introduce a rather general network

dynamics where each oscillator is given in Hopf normal norm.

Hopf normal form with coupling. When considering an oscillator in Hopf normal form of order M ∈ N as one node in a
network of oscillators, the governing dynamics may be given as

ẇk = f (wk;µ) + κ gk(w1, . . . , wN )
(4.4)
=

M−1∑
m=0

(−1)mσm|wk|
2mwk + κ gk(w1, . . . , wN ) , (6.5)

with a coupling function gk : CN
→ C that depends on all other oscillators wj̸=k ∈ C. As usual, the coupling strength

κ is assumed to be small, i.e. |κ| ≪ 1. Capitalizing on the assumption (iii) of exclusively pairwise interactions as in
(5.5), this pairwise coupling structure is expected to be preserved in (6.5), too. For simplicity, we further assume that the
pairwise coupling functions gkj between oscillators coincide up to an adjacency value Ckj ∈ {0, 1} that denotes structural
connectivity between nodes. Hence, the coupling simplifies to

gk(w1, . . . , wN ) =
1
N

N∑
j=1

gkj(wk, wj) =
1
N

N∑
j=1

Ckjg(wk, wj) . (6.6)

That is, we consider the network dynamics

ẇk =

M−1∑
m=0

(−1)mσm|wk|
2mwk +

κ

N

N∑
j=1

Ckjg(wk, wj) . (6.7)

As we will show below, this dynamics allows a phase reduction following the techniques in Section 3.
Three remarks are due at this point: First, thanks to the pairwise coupling structure it suffices to consider only two

coupled oscillators w,w′ with dynamics

ẇ = f (w;µ) + κ g(w,w′) , (6.8)

http://mathworks.com
http://www.math.pitt.edu/~bard/xpp/xpp.html
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and a similar equation holds for w′. The analytic results of (6.8) can be extended to the whole network in an analogous
way. Second, the coupling function g(w,w′) in (6.8) depends in general also on the complex conjugates of w and w′. We
can formally expand g(w,w′) = g(w, w̄,w′, w̄′) as a power series

g(w, w̄,w′, w̄′) =

∑
k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n (6.9)

with complex-valued coefficients gklmn ∈ C. Importantly, not all of these coefficients contribute to the reduced phase
dynamics. Only linear and cubic terms provide substantial contributions to the first and second harmonics of the resulting
phase model; see the subsequent Section 6.3.3* that builds on [177]. Third, (6.7) is not the network Hopf normal form.
In Section 4.3.3, we highlighted the importance of the inherent symmetries in normal forms. Here, however, the circular
symmetry of the Hopf normal form is not respected in the coupling terms (6.9).

Hopf normal form of an oscillator network. Considering a network of coupled identical oscillators close to a supercritical
Hopf bifurcation, the network Hopf normal form of second order with exclusively pairwise interactions reads23

ẇk = αwk − β|wk|
2wk +

κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
. (6.10)

For the sake of legibility we renamed σ1 = α and σ2 = β , and introduced the complex-valued coupling parameters
γ = γR + iγI and δ = δR + iδI . With the definitions in Section 4.1, (6.10) defines the Hopf normal form of the entire
network w1, . . . , wN as the monomials

N∑
j=1

wj and w̄k

∑
j=1

w2
j

are the only resonant monomials of the pairwise coupling function (6.6). The circular symmetry of the (individual) Hopf
normal form is maintained on the network level. The general network Hopf normal form will be introduced later in
Section 6.3.5, for which we also need further, yet basic, definitions of equivariance theory. For our purposes, however,
the exemplary network Hopf normal form (6.10) is more than sufficient: On the one hand, it allows for a straightforward
phase reduction as depicted in the following subsection. On the other hand, it serves perfectly as the targeted dynamics of
two seminal normal form reduction techniques, whose similarities and differences will be illustrated in detail in Section 7.

6.3.2. Example: Phase reductions of an oscillator network in Hopf normal form
Analogous to Section 4.4, we now demonstrate the different phase reduction techniques of Section 3 for the network

Hopf normal form (6.10). We will exemplarily use a pair of coupled oscillators,

ẇk = αwk − β|wk|
2wk + κ

(
γwj + δw̄kw

2
j

)
with (k, j) = (1, 2) or (2, 1), in order to establish the phase dynamics (5.6) & (5.7), which read

θ̇k = ω + κ

N∑
j=1

CkjH
(
θk − θj

)
, where H(ψ) =

∑
n≥0

an cos(nψ) + bn sin(nψ) .

The analytic phase reduction techniques present mathematical recipes along which we can determine the frequency ω
and the amplitudes an, bn of the Fourier modes in terms of the normal form coefficients α = u0 + iv0, β = u1 + iv1 as
well as γ = γR + iγI and δ = δR + iδI . The frequency and the Fourier coefficients of first and second harmonics of the
reduced phase models will coincide across all analytic phase reduction techniques. The frequency reads ω = u0(c0 − c2)
and the Fourier coefficients are

a1 = γR(c1 − c2) , b1 = −γR(1 + c1c2) ,
a2 = R2δR(c3 − c2) , b2 = −R2δR(1 + c2c3) ,

(6.11)

where we abbreviated c0 = v0/u0, c2 = v1/u1, c1 = γI/γR, and c3 = δI/δR, and R denotes the amplitude of oscillation.

Winfree’s and Kuramoto’s reductions & the direct and the adjoint methods
The common basis for Winfree’s and Kuramoto’s reduction techniques as well as for the direct and the adjoint methods,

is that for weak perturbations, in this case through the weak coupling to other oscillators, the different approaches
capitalize on the linearized dynamics around the limit cycle of an uncoupled oscillator. The essential properties of the

23 Eq. (6.10) is the Hopf normal form of the full network (6.7) with SN × S1-equivariance in the weak coupling limit and for large network size
N ≫ 1, see Section 6.3.5 for a rigorous derivation.
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limit cycle wc and the phase sensitivity function Z were derived in Section 4.4 as:

limit cycle : wc(θk) = Rceiθk with θk = ωt + φk

natural frequency : ω = u0(c0 − c2)

amplitude : Rc
=
√
u0/u1

phase sensitivity function : Z(θ ) = (−c2 + i)eiθ/Rc .

The phase sensitivity function Z(θ ) = Zx(θ ) + iZy(θ ) can alternatively be written in vector form as Z(θ ) =
(
Zx(θ ), Zy(θ )

)⊺
with Zx(θ ) = (− sin θ−c2 cos θ )/Rc and Zy(θ ) = (−c2 sin θ+cos θ )/Rc . From here, we can determine the phase interaction
function H by averaging the product of Z with the coupling function g with the arguments evaluated on the limit cycle.
In complex notation, we have g(wk, wj) = γwj + δw̄kw

2
j , then g(θk, θj) := g

(
wc(θk), wc(θj)

)
. The scalar (vector) product

becomes the complex dot product24 and the phase interaction function can be computed as

H(ψ) =
1
2π

∫ 2π

0
(−c2 + i)ei(ψ+ϕ)

·
(
γ ei(ψ+ϕ)

+ δ(Rc)2e−i(ψ−ϕ)) dϕ .
Evaluating the integral leads exactly to the desired Fourier amplitudes (6.11).

Haken’s reduction via averaging
Haken’s phase reduction approach via averaging serves as an alternative to the previous phase reduction techniques.

Although the latter are formulated for rather general oscillatory dynamical systems, their practical application is limited
to a few exceptional cases in which either explicit expressions for the limit cycle and the asymptotic phase maps are
available, or the dynamics has already been reduced to normal form. This approach is a more direct way to reduce an
oscillatory network to its phase dynamics. Although the inherent averaging in this approach does not allow for a rigorous
deduction of the phase sensitivity function Z , for the same reason it regains its validity (and power) when assessing
the phase dynamics of coupled oscillators whose amplitude and phase change slowly as compared to the oscillators’
frequency. This is particularly the case for weakly coupled oscillators where averaging is required to compute the phase
interaction function H . Below we show in detail that Haken’s reduction approach results in the same phase model (5.6)
& (5.7) with Fourier amplitudes (6.11) as computed along the other techniques. We would like to remark that Haken’s
reduction approach can also be applied for oscillatory networks beyond the limit of weak coupling.25 In fact, it allows
to (analytically) reduce oscillatory network dynamics that are induced through (strong) coupling between the (excitable)
elements, see, e.g., [33]. However, since averaging is applied to the linearized dynamics around an unstable fixed point
within a stable limit cycle solution xc (in contrast to the linearized dynamics around xc as in Section 3.2), this technique
loses accuracy for large-amplitude oscillations, see also Section 8. Yet, it provides a phase model whose parameters are
directly linked to those of the underlying oscillatory model, and presents a valuable addition to the variety of phase
reduction techniques.

Haken’s reduction approach requires that every node in the network describes stable circular oscillations in the plane.
This is given by the network Hopf normal form (6.10). For two coupled oscillators wk, wj ∈ C as above we consider the
dynamics in two-dimensional real-valued coordinates wk = xk + iyk and wj = xj + iyj. We first transform the nonlinear
coupling terms in real coordinates and use polar coordinates wk = Rkei(ωt+φk). In particular, we can use the following
identities

⟨xkyk⟩ = 0 and
⟨
x2k
⟩
=
⟨
y2k
⟩
=

1
2R

2
k . (6.12)

Substituting them and the corresponding (xk, yk)-dynamics in (3.8) and defining ψ = φk − φj, we arrive at

φ̇k = −ω + v0 − v1R2
k + κ

[
Rj

Rk

(
γI cosψ − γR sinψ

)
+ R2

j

(
δI cos(2ψ) − δR sin(2ψ)

)]
(6.13a)

Ṙk = u0Rk − u1R3
k + κ

[
Rj

(
γR cosψ + γI sinψ

)
+ RkR2

j

(
δR cos(2ψ) + δI sin(2ψ)

)]
. (6.13b)

In the case of weak coupling, κ ≪ 1, and being close to the Hopf bifurcation, Rk,j ≪ 1, the Rk-dynamics (6.13b) evolves
very slowly compared to φk. Therefore, one can assume that Rk and Rj are constant and do not vanish. We can solve
(6.13b) for R2

k by adiabatically eliminating the Rk-dynamics, i.e. Ṙk = 0, as

R2
k =

u0

u1
+
κ

u1

[
Rj

Rk

(
γR cosψ + γI sinψ

)
+ R2

j

(
δR cos(2ψ) + δI sin(2ψ)

)]
,

24 The complex dot product for a, b ∈ C is defined as a · b = (āb + ab̄)/2.
25 Note the change from ‘‘oscillator network’’ to ‘‘oscillatory network’’ as we have introduced ‘‘oscillators’’ in Section 2.1 such that they exhibit
stable limit cycle oscillations without external coupling.
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which is close to the uncoupled limit cycle radius Rc
=

√
u0/u1. Substituting Rc into (6.13a) and using θ̇k = ω + φ̇k, we

find that

θ̇k = v0 − u0
v1

u1
+ κ

{[(
γI − γR

v1

u1

)
cos(θk − θj) −

(
γR + γI

v1

u1

)
sin(θk − θj)

]
+

+ Rc2
[(
δI − δR

v1

u1

)
cos
(
2(θk − θj)

)
−

(
δR + δI

v1

u1

)
sin
(
2(θk − θj)

)]}
.

(6.14)

This result can immediately be extended to a network of coupled oscillators yielding the phase model (5.7) with Fourier
amplitudes (6.11).

6.3.3. Nonlinear coupling terms in Hopf normal forms*
Allowing for nonlinear coupling terms (6.9) in the network dynamics (6.7), the corresponding phase interaction

function H of the reduced phase model includes also higher harmonics, which may hint at richer collective behavior,
see Section 5.3.3. Only a few nonlinear terms gklmn contribute to the (averaged) phase interaction function H . In fact,
only two terms, g0010 and g0120, are the dominant contributors to the first and second harmonics of H at leading order.
To demonstrate this, we consider the dynamics (6.8) of two coupled oscillators in Hopf normal form of arbitrary order
M ≥ 1. Without coupling, κ = 0, we find a stable limit cycle solution wc(t) = Rceiθ

c (t) for the two oscillators; for
the sake of legibility we will drop the c and refer to them as w,w′. The resulting phase model takes then the form
θ̇ = ω+ κH(θ − θ ′), where the phase interaction function H can be expanded in Fourier space as in (5.7). In the complex
plane, we can compute H as

H(θ − θ ′) =
⟨
Z(θ ) · g(w, w̄,w′, w̄′)

⟩
, (6.15)

where a · b = (āb + ab̄)/2 with a, b ∈ C is the complex dot product as above. For conciseness, we express the averaging
in compressed form as

⟨
f (θ, θ ′)

⟩
=

1
2π

∫ 2π
0 f (θ + ϑ, θ ′

+ ϑ) dϑ .
The assumption of the Hopf normal form implies that f (w, w̄) consists only of the resonant terms |w|

nw with
n = 0, 1, 2, . . ., and that the dynamics ẇ = f (w, w̄) is rotation invariant. Consequently, bothw(θ ) and the phase sensitivity
function Z(θ ) are of the form w = w(0)eiθ and Z(θ ) = Z(0)eiθ . For direct linear coupling g(w, w̄,w′, w̄′) = g0010w′ the
interaction function H(θ − θ ′) =

⟨
Z(θ ) · g0010w′(θ ′)

⟩
thus contains only first harmonics.

Being near a supercritical Hopf bifurcation, the amplitude of the oscillations reads Rc
= |w| = O(

√
µ), where µ

denotes the distance to the Hopf bifurcation in parameter space. By introducing ε2 = µ, we have Rc
= O(ε) and

Z(θ ) = O−1(ε). Any higher order term |w|
nw in f (w, w̄) presents then corrections of order O3(ε) and O1(ε) to w(θ )

and Z(θ ), respectively. In view of the expansion in Fourier space (5.7), these terms lead to corrections of order O2(ε)
in a1 and b1, but they do not contribute to higher harmonics an, bn ̸= 0 for n ≥ 2. For the phase interaction function
H to contain higher harmonics, we have to take higher-order terms gklmn in the coupling function g(w, w̄,w′, w̄′) into
account. We consider g(w, w̄,w′, w̄′) = wkw̄lw′mw̄′n a single monomial with k, l,m, n ≥ 0 and gklmn = δklmn. Then, we
have Z · g = Ok+m+n+l−1(ε). On the other hand,

Z · g(w,w′) ∝ e−iθ
·
(
eiθ
)k(e−iθ)l(eiθ ′)m(e−iθ ′)n

= ei(k−l−1)θei(m−n)θ ′

holds. The latter term contributes to the amplitudes aj and bj of the jth harmonic (j > 0) when it is a function
of only ±j(θ − θ ′). This means that the set (k, l,m, n) has to fulfill k − l − 1 = ±j and m − n = ∓j. The term
w̄j−1w′j

= O2j−1(ε) contributes significantly to aj and bj. Therefore, the amplitudes of the jth harmonic are of order
O(Z · g(w,w′)) = O(2j−1)−1(ε), that is,

aj, bj = O2(j−1)(ε) . (6.16)

Note that this is in line with the coefficient a0 of the zeroth harmonic, j = 0, whose major contributions stem from the
monomial g(w, w̄,w′, w̄′) = w and yield a constant increase or decrease of the natural frequency depending on the sign
of a0. For j > 0, the term wj+1w̄′j

= O2j+1(ε) gives contributions of order O2j(ε) to the jth harmonic. These contributions,
however, present only minor corrections as they are smaller than aj, bj of two orders of magnitude, and can therefore be
neglected. Along these lines, we consider coupling terms of order 3, which yield contributions of order O2(ε) to the phase
dynamics. The terms w2w̄′, |w|

2w′, and |w′
|
2
w′ contribute to the first harmonics a1, b1. Their values differ at one order of

magnitude from a1, b1, so that their contributions can be neglected. Likewise, |w|
2w and w|w′

|
2 contribute negligibly to

the zeroth harmonic, namely by less than two orders of magnitude. The only cubic resonant term that affects the phase
dynamics is w̄w′2, which contributes to the second harmonics a2, b2 at the same order of magnitude O2(ε). Moreover, we
can show that no monomial in g(w, w̄,w′, w̄′) of even order will contribute to H . When evaluating the inner product in
(6.15) with g(w,w′) ∝ exp

(
i(k − l)θ + i(m − n)θ ′

)
, we obtain

H(θ − θ ′) ∝
1
2π

∫ 2π

0
αklmne−i(θ+ϑ)ei((k−l)θ+(m−n)θ ′

+(k−l+m−n)ϑ) + βklmnei(θ+ϑ)e−i((k−l)θ+(m−n)θ ′
+(k−l+m−n)ϑ)dϑ

∝
1
2π

∫ 2π

0
αklmnei((k−l+m−n−1)ϑ)

+ βklmne−i((k−l+m−n−1)ϑ)dϑ , (6.17)
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where αklmn, βklmn ∈ C are constants. Due to the inherent averaging in (6.17) and as exp(inϑ) is 2π-periodic, H(θ − θ ′)
will vanish if (k− l+m−n) is even. This means that only monomials of odd order will contribute to the phase interaction
function H .

6.3.4. Equivariant theory and the network Hopf normal form
The full network Hopf normal form becomes more involved without the assumptions of weak coupling and of large

network size N ≫ 1. In fact, the coupling in the full network normal form comprises terms that describe simultaneous
interactions between multiple oscillators, and thus is beyond a mere pairwise coupling structure. Here, we briefly present
the Hopf network normal form. How a phase model can be reduced while respecting the additional terms, will be subject
of the following subjection. There, we will introduce a phase reduction technique proposed by Ashwin and Rodrigues [74]
that exploits the symmetry properties of a network of weakly coupled oscillators, see also [188]. This symmetry approach
presents an important extension to previous reported reduction techniques, especially when dealing with networks
featuring complex coupling functions of multiple interacting oscillators.

Given a network of N ≥ 4 all-to-all coupled oscillators, where each can be described individually in Hopf normal form
as in (4.4), we consider the network dynamics

ẇk = f (wk;µ) + κ gk(w1, . . . , wN ) (6.18)

with full permutation symmetry SN and which respects rotational invariance S1. Intuitively, full permutation is given if the
dynamics (6.18) can be interchangeably used for any two oscillators k ̸= j. That is, the network dynamics remains the
same for any permutation σ ∈ SN with

σ (w1, . . . , wN) =
(
wσ−1(1), . . . , wσ−1(N)

)
.

As f is the same for all oscillators, this means that

gk(w1, . . . , wN ) = g1(wk, w2, . . . , wk−1, w1, wk+1, . . . , wN ) (6.19)

has to be symmetric under all permutations of the last N − 1 arguments that fix the first. In particular, we need the
network to be globally (all-to-all) coupled with Ckj = 1 for all k ̸= j with the same coupling function for all nodes.

Rotational invariance is fulfilled if both the uncoupled term f and the coupling g are in Hopf normal form. Eq. (6.18)
is rotational invariant if the rotation of all variables w1, . . . , wN by the same phase θ ∈ S1 does not change the network
dynamics. Formally, the action of the group S1 on CN is defined by

θ (w1, . . . , wN ) := eiθ (w1, . . . , wN )

for any (phase) θ ∈ S1. Indeed, the non-vanishing, resonant polynomial components, i.e. monomials, appearing in the
Hopf normal form are exactly those that satisfy the circular S1 symmetry. While we previously assumed g to be an
arbitrary power series in its variables, this power series is here restricted to consist of only resonant monomials. For g
with monomials of degree lower than or equal to three, there are at most 11 non-vanishing terms that fulfill the symmetry
assumptions [74]. Denoting by w = (w1, . . . , wN ) the variable vector with N ≥ 4, then the admissible coupling terms ĝj
are:

ĝ−1(w) =
1
N

N∑
j=1

wj, ĝ2(w) = w2
1
1
N

N∑
j=1

w̄j, ĝ3(w) = |w1|
2 1
N

N∑
j=1

wj,

ĝ4(w) = w1
1
N

N∑
j=1

|wj|
2, ĝ5(w) = w1

1
N2

N∑
j,k=1

wjw̄k, ĝ6(w) = w̄1
1
N

N∑
j=1

w2
j ,

ĝ7(w) = w̄1
1
N2

N∑
j,k=1

wjwk, ĝ8(w) =
1
N

N∑
j=1

|wj|
2wj, ĝ9(w) =

1
N2

N∑
j,k=1

w2
j w̄k,

ĝ10(w) =
1
N2

N∑
j,k=1

wj|wk|
2, ĝ11(w) =

1
N3

N∑
j,k,l=1

wjwkw̄l .

Combining this with the individual Hopf normal form of second order, ẇk = αwk − β|wk|
2wk, leads to the network Hopf

normal form of second order with SN × S1-equivariance

ẇk = αwk − β|wk|
2wk + κ

∑
j

ajĝj(wk, w2, . . . , wk−1, w1, wk+1, . . . , wN ) . (6.20)

The decomposition into the eleven coupling terms in (6.20) holds for any polynomial function g : CN
→ CN , g =

(g1, . . . , gN ), of degree lower than or equal to 3 and which respects the SN ×S1-equivariance as in (6.19), see [Theorem 4.2,
189]. The proof for the network Hopf normal form, however, is not instructive, but existential: Equivariance theory allows
to establish the explicit form (6.20), but it does not provide a ‘‘recipe’’ how to achieve it from some underlying network
dynamics of the form ẋk = f (xk;µ) + κgx(x1, . . . , xN ). In the subsequent Section 7 we will provide two (approximate)
recipes for the simplified network Hopf normal form as considered before.
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6.3.5. Ashwin & Rodrigues’ phase reduction via SN × S1-symmetry
Given the full network Hopf normal form (6.20) with weak coupling strength |κ| ≪ 1, Ashwin and Rodrigues [74]

derived the phase model

θ̇k = ω̃(θ, κ) + κ

(
H (2)

k (θ ) + H (3)
k (θ ) + H (4)

k (θ )
)

(6.21)

via equivariant theory. The phase dynamics (6.21) respects the coupling structure of the underlying dynamics (6.20) and
allows interactions of up to four oscillators: The functions H (j)

k denote the sums over pairwise, triplet and quadruplet
interactions of the phases for j = 2, 3, 4, respectively,

H (2)
k (θ ) =

1
N

N∑
j=1

H2(θj − θk)

H (3)
k (θ ) =

1
N2

N∑
j,l=1

H3,1(θj + θl − 2θk) +
1
N2

N∑
j,l=1

H3,2(2θj − θl − θk)

H (4)
k (θ ) =

1
N3

N∑
j,l,m=1

H4(θj + θl − θm − θk)

with θ = (θ1, . . . , θN ) denoting the phase vector as before. In Appendix A.5, we provide the explicit expressions of the
particular phase interaction functions H2, . . . ,H4.

In the limit of weak coupling 0 < κ ≪ µ ≪ 1 and for reasonably large network size N ≫ 4, this general network
Hopf normal form (6.21) reduces to

θ̇k = ω + κ

( 1
N

N∑
j=1

[
ξ 01 cos

(
θj − θk + χ0

1

)
+ ε2ξ 12 cos

(
2(θj − θk) + χ1

2

)]
+ O(ε4)

)
(6.22)

with ω = αI − ε2(βI/βR) + O(ε4) and ε2 = µ with ε > 0. In particular, the phase interaction function, i.e. the term in
brackets in (6.22), consists of first and second harmonics with merely pairwise interactions. Rearranging terms by using (a)
trigonometric identities and (b) the fact that the amplitude Rc of oscillations close to a supercritical Hopf bifurcation scales
with Rc

∝
√
µ, and discarding those terms of order O4(ε), (6.22) coincides with the phase dynamics of the previously

established network Hopf normal form (6.10) up to the connectivity values Ckj; see also Appendix A.5 for more details.
Following the argumentation in Section 6.3.3*, we already realized that only a specific selection of coupling terms

contributes to the phase dynamics (at leading order). In fact, the averaging inherent to determine the phase interaction
function H – which is intrinsically tied to the assumption of weak coupling and slowly varying phase deviations [12,46]
– distinguished the same coupling terms ĝj as dominant contributors to the phase dynamics that have been found along
Ashwin and Rodrigues’ reduction approach of the full network. Hence, averaging can be thought of as imposing those
symmetry constraints on the coupling functions gk that are intrinsic to the Hopf normal form.

For any particular choice of coupling topology other than global, all-to-all coupling, the permutation symmetry SN
cannot be upheld. However, for given coupling functions g = (g1, . . . , gN ) and connectivity matrix C = {Ckj}k,j, one can
heuristically define a substitution operator K via the formal convolution KC

(
g(w1, . . . , wN )

)
:=
(
C ⋆ g

)
(w1, . . . , wN ) with

entries(
C ⋆ g

)
j(w1, . . . , wN ) = gj

(
Cj1w1, . . . , CjNwN

)
.

Then, one can first follow Ashwin and Rodrigues’ phase reduction approach to derive (6.22), and subsequently apply the
convolution K ⋆ g , which reveals the phase model

θ̇k = ω +
κ

N

N∑
j=1

Ckj

[
ξ 01 cos(θj − θk + χ1) + Rc2ξ 12 cos

(
2(θj − θk) + χ2

)]
.

Using trigonometric identities, we eventually arrive at the desired phase model (5.7) with Fourier amplitudes (6.11).

7. Hopf normal form reduction of an oscillator network

Normal form reductions for oscillator networks are similar in nature to those for a single oscillator, but they become
more involved as the reduction has to occur for all oscillators of the network simultaneously. Despite the mathematically
proven existence of the network Hopf normal form, there is, to the best of our knowledge, no general and exact algorithm
for deriving such a canonical model. According to Hoppensteadt and Izhikevich, ‘‘the process of deriving canonical models
is rather an art than a science’’ [Chapter 4.1, 46]. Two schemes have proven fruitful to retain the simplified network Hopf
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normal form (6.10),

ẇk = αwk − β|wk|
2wk +

κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
from the dynamics (5.5),

ẋk = f (xk;µ)+
κ

N

N∑
j=1

Ckjg
(
xk, xj

)
.

The first one, Kuramoto’s reductive perturbation approach, is a natural extension of the technique described in Section 4.3.1.
The second one, Poincaré’s nonlinear transform approach, capitalizes on a series of nonlinear transforms as introduced
in Section 4.3.2. However, both techniques only approximate the network dynamics to the network Hopf normal form.
A mathematically rigorous normal form reduction of the full network X =

(
x1, . . . , xN

)
has to incorporate coordinate

transforms of the form X = Ψ (W ) where W = (w1, . . . , wN ) and Ψ = (ψ1, . . . , ψN ) with ψj = ψj(w1, . . . , wN ). This can
presumably lead to mixed coupling terms in the normal form beyond pairwise interactions. For weak coupling, however,
we may consider ψj(w1, . . . , wN ) ≈ ψ0

j (wj) + κψ1
j (w1, . . . , wN ) and for κ → 0 we have ψj(w1, . . . , wN ) = ψ0

j (wj).
Since we here consider the uncoupled oscillators to be identical, the local coordinate transforms ψ0

j = ψ coincide for all
j = 1, . . . ,N , which results in Ψ (W ) ≈

(
ψ(w1), . . . , ψ(wN )

)
. Hence, the pairwise coupling assumption of the underlying

dynamics, i.e. gk(X) =
∑

j g(xk, xj), is directly inherited by the reduced dynamics as gk(W ) =
∑

j g(wk, wj); see also
Lemma A.6 in Appendix A.3. In turn, one can concentrate on the (reduced) dynamics of a single oscillator, identify the
effect of the interaction with another one, and extend the result to the full network of coupled oscillators. Kuramoto’s
reduction technique is based upon the uncoupled, single oscillator dynamics and subsequently explores deviations induced
through the coupling in a perturbative approach. The second technique first aims at identifying the correct local coordinate
transform xk = ψ(wk) for a single oscillator, and then applies ψ also to the coupling terms. Applying either of the
techniques thus leads to the (reduced) coupling function g(wj, wk) =

∑
a,b,c,dw

a
j w̄

b
j w

c
kw̄

d
k with both resonant and non-

resonant monomials wa
j w̄

b
j w

c
kw̄

d
k . By using the arguments in Section 6.3.3*, one can discard all but the resonant monomials,

which results in the approximate network Hopf normal form (6.10).

7.1. Kuramoto’s reductive perturbation approach

For the system (5.5), recall that one can focus on two coupled oscillators x, x′
∈ Rn that evolve according to

ẋ = f (x;µ) + κ g(x, x′) (7.1)

and an analogous expression holds for x′. For symmetry reasons, it suffices to consider only the dynamics of x. The stable
fixed point solution x = 0 undergoes a Hopf bifurcation at µ = 0, giving rise to stable limit-cycle oscillations with
amplitude R = O(ε) where ε =

√
µ. We will only consider µ > 0 and small coupling strengths 0 ≤ |κ| ≪ µ ≪ 1. We

further substitute κ ↦→ ε2κ , which indicates the smallness of κ compared to µ. The dynamics (7.1) hence reads

ẋ = f (x; ε2) + ε2κ g(x, x′) .

The time-asymptotic behavior of x(t) can be described similar to (4.7), but now subject to the coupling with the other
oscillator x′(t):

x = x0(w, w̄, φ) + ρ(w, w̄,w′, w̄′, φ) ,

ẇ = f (w, w̄) + κg(w, w̄,w′, w̄′) . (7.2)

x0(t) denotes the solution (4.6) of the uncoupled linearized dynamics. The complex amplitude w = w(τ ) evolves on
the slower time scale τ = ε2t and according to the amplitude equation (7.2). The functions ρ, f , g are to be determined
perturbatively, i.e., by considering a ‘small’ deviation from the first solution x = x0 and expanding ρ, f , g around it. The
explicit form of f (w,w′) in lowest order was already given in (4.8) & (4.9). Note that the dependence on the bifurcation
parameter µ is only respected at first order, but neither in the nonlinear nor in the coupling terms. To derive the coupling
function g(w, w̄,w′, w̄′), we consider two cases.

First, we assume the coupling g(x, x′) to be linear. Then, the coupling can be either diffusive or direct (non-diffusive),
i.e g = gdiff or g = gdir, respectively, which yields

gdiff(x, x′) = D̂(x′
− x)

gdir(x, x′) = D̂x′

}
H⇒

{
gdiff(w,w′) = γ (w′

− w)
gdir(w,w′) = γw′ , (7.3)

with γ = vD̂u and D̂ ∈ Rn×n, see also [177]. In line with (6.10), a second-order amplitude equation for weakly coupled
oscillators near a supercritical Hopf bifurcation point with linear coupling κγw′ obeys the form

ẇ = αw − β|w|
2w + κ

(
γw′

+ δw̄w′2) (7.4)
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with the complex coupling constants γ ∈ C, as given in (7.3), and

δ = 2vn2

(
ū, (L̂0 − 2iω0I)−1D̂(L̂0 − 2iω0I)−1n2(u, u)

)
. (7.5)

Second, for nonlinear couplings g(x, x′) =
∑

j,k≥0 G jk(x, x′), only the parameter δ in (7.4) changes to

δ = 2vn2

(
ū,
(
L̂0 − 2iω0I

)−1
[
G01

(
L̂0 − 2iω0I

)−1
· n2(u, u) − G02(u, u)

])
− vG11

(
ū,
(
L̂0 − 2iω0I

)−1n2(u, u)
)
+ vG12(ū, u, u) , (7.6)

where G01 is the matrix corresponding to direct linear coupling, that is, G01 = D̂, see (7.3), and G jk are nonlinear coupling
terms of order j+k as defined in Appendix A.2.2. For linear coupling all G jk vanish except for G01. In this case, we retrieve
(7.5).

7.2. Poincaré’s nonlinear transform approach

Using a series of subsequent nonlinear transforms, the reduction approach presented in this section aims at identifying
the local coordinate transform ψ for the Hopf normal form of a single oscillator and applying ψ to the full network. Again,
we consider the dynamics (7.1) of two weakly coupled oscillators as in the previous subsection, and strive for reduced
dynamics of the form

ẇ = f (w) + κ g(w,w′) = αw − β|w|
2w + κ

(
γw′

+ δw̄w′2) .
We restrict our case to only two dimensions x = (x, y), x′

= (x′, y′) ∈ R2. Using a projection method, the case of n-
dimensional dynamical systems follows analogously, see [Chapter 5, 82] for details. As said, the strategy to obtain the
reduced network dynamics consists of two steps:

(i) Following the reduction technique outlined in Section 4.3.2 for a single oscillator x(t), we can rewrite the uncoupled
dynamics ẋ = f (x;µ) in complex form (4.10) for a complex-valued variable z(t) ∈ C, and then establish a Poincaré
transformation (4.11),

z = ψ(w) = w +

∑
a+b≥2

habw
aw̄b ,

in order to achieve the (individual) Hopf normal form ẇ = αw − β|w|
2w + O4(z).

(ii) We apply the same set of transforms to the coupling function g(x, x′) in order to derive the corresponding coupling
function g(w,w′) in the w-dynamics. First, we rewrite g(x, x′) in complex form, that is,

g(x, x′) ↦−→ g̃(z, z ′) = g̃(z, z̄, z ′, z̄ ′) ,

where the transformation in the complex plane is again determined by the eigenvectors of the Jacobian L = ∇f (x).
Then, we use the previously identified Poincaré transformation z = ψ(w) for expressing g̃(z, z̄, z ′, z̄ ′) in terms of
w and w′ as

g̃(z, z̄, z ′, z̄ ′)
ψ

↦−→ g(w, w̄,w′, w̄′) =

∑
a+b+c+d≥0

gabcdwaw̄bw′cw̄′d ,

where we expanded g(w,w′) = g(w, w̄,w′, w̄′) as a formal power series. As mentioned above, we do not need to
calculate all of the coupling coefficients gabcd. Those that contribute dominantly to the first and second harmonics
of the phase model, respectively, are

g0010 = g̃0010

g0120 =
1
2

(
g̃0120 − h11g̃0020 − h01g̃0002 + h20g̃0110 + h02g̃0101

−h11h20g̃0010 − h11h02g̃0001 − |h02|
2g̃0010 − h20h02g̃0001

)
,

where g̃abcd are the coefficients of the respective power series of g̃(z, z̄, z ′, z̄ ′), hab are those of the Poincaré
transformation (4.11), and the overline denotes complex conjugation. Further coefficients of third order are
g2100, g2001, g0120, g0021, g1110, g1011. All the coefficients gabcd can be indicated in terms of the original coupling
g(x, x′). The resulting expressions, however, become rather lengthy so that we refrain from computing them
explicitly but note that the method can be implemented in algorithmic form. The computational details can be
found in Appendix A.3. Importantly, due to the near-identity character of the Poincaré transformation (4.11), the
linear terms of g(w,w′) coincide with those of g̃(z, z ′). This means, in case of (direct) linear coupling g̃(z, z ′) = γ z ′

we can immediately infer the coefficient g0010 as above. Nonlinear coupling terms gabcd with a + b + c + d > 1, by
contrast, become more involved as they incorporate the intertwined effects of higher order terms in the original
coupling as well as in the Poincaré transformation.
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7.3. The connection between analytic reduction techniques

The different normal form reduction techniques outlined above aim at distilling the network Hopf normal form from
the underlying network dynamics. Both presented techniques only lead to an approximate network Hopf normal form as
the reduced coupling terms do not comply with the required symmetry assumptions. Kuramoto’s reductive perturbation
approach and Poincaré’s nonlinear transform approach are similar in nature as they both start off the uncoupled oscillator
dynamics and subsequently characterize the coupling effects of the full network. However, an important difference is
that there is a prevailing and inherent dependence of all terms on the bifurcation parameter µ following the Poincaré
approach, whereas in the Kuramoto approach this µ-dependence is discarded for all nonlinear terms. Evaluating the
resulting expressions in the Poincaré approach at the bifurcation point, µ = 0, however, will reveal much resemblance
between the two reduction techniques.

In Section 4, a third alternative to derive the Hopf normal form of a single oscillator was introduced as Takens’ reduction
via Lie brackets. Similar to Poincaré’s reduction via nonlinear transforms, it also identifies a local coordinate transform akin
to the Poincaré transformation above. This coordinate transform allows for extending the Takens approach to a network
level in the same way as in the Poincaré approach in the previous sub-section. However, Takens’ reduction via Lie brackets
respects the dependence on the bifurcation parameter only in linear terms — as in Kuramoto’s reductive perturbation.
Therefore, Takens’ approach for an oscillator network can be regarded as an intermediate reduction technique between
the Poincaré and the Kuramoto approaches. For this reason, we refrain from listing it here as a third alternative to reduce
the network Hopf normal form of second order. Notably, the strength of Takens’ approach is the computation of Hopf
normal forms of arbitrary high order M ≥ 1, yet considering higher-order Hopf normal forms on a network level is
beyond the scope of this report.

All three reduction techniques are also closely related to each other although they consider different forms of the
underlying dynamics as a starting point. Restricting our considerations again to two real dimensions, Kuramoto’s reductive
perturbation can be applied to an arbitrary form of the dynamics

ẋk = f (xk;µ) + κ

N∑
j=1

Ckjg(xk, xj) .

Takens’ reduction via Lie brackets explicitly requires the (linearized) dynamics about the fixed point x = 0, that is, ẋ = Lx
with L = L(µ) = ∇f (x;µ)

⏐⏐
x=0, to be given in Jordan real form

L(µ) ↦→ J (µ) =

(
ϱ(µ) −ω(µ)
ω(µ) ϱ(µ)

)
with real-valued ϱ(µ), ω(µ) ∈ R. For Poincaré’s reduction via nonlinear transforms, the dynamics have to be formulated in
terms of complex variables zk ∈ C via the transformation

x = zu(µ) + z̄ū(µ)

with u(µ) being the right eigenvector of the Jacobian L(µ) corresponding to the eigenvalue λ(µ) = ϱ(µ) + iω(µ). This
transformation in the complex plane establishes a linear relation between x and the real and imaginary parts of z = zR+izI .
In particular, (zR, zI ) are the coordinates of x in the (real) eigenbasis of L(µ) composed by

{
2Re

(
u(µ)

)
,−2Im

(
u(µ)

)}
. That

is, we recover the same transformation of the linearized dynamics into its canonical Jordan real form as in Takens’ reduction
via Lie brackets.

8. Networks of Brusselators

The Brusselator is a theoretical model of oscillating chemical reactions. It comprises four hypothetical chemical
reactions and has been developed by the Brussels school around Ilya Prigogine and René Lefever [67,190–192] – hence the
name. For a long time, reports on oscillating chemical reactions were facing harsh skepticism. Despite the strong interest
in biological and biochemical oscillations in the 1950s and 60s, the discovery of oscillatory patterns in a closed chemical
system by Belousov [193] in 1951 had to be meticulously reproduced and investigated for years by Zhabotinsky [194]
until the nowadays so famous Belousov–Zhabotinsky reaction found its way into the scientific community [195]; for
an overview of oscillating chemical reactions see also [12,21,196]. In a way, the Belousov–Zhabotinsky reaction was
conceived as a manageable model of more complex systems, which simultaneously bore a close analogy to biology:
Strogatz describes this analogy where ‘‘propagating waves of oxidation [. . . ] annihilate upon collision just like waves
of excitation in neural or cardiac tissue. [. . . ] spiral waves are now an ubiquitous feature of chemical, biological, and
physical excitable media’’ [21]. The original Belousov–Zhabotinsky reaction, which involves more than twenty elementary
reaction steps, could effectively be rewritten in three differential equations. From a similar perspective, one can regard
the Brusselator as a simplified chemical oscillator, which can be described in two differential equations. Despite its ability
to exhibit oscillatory dynamics, as found in the Belousov–Zhabotinsky reaction, the Brusselator is a mere hypothetical
model and is not based on a particular chemical reaction. Nonetheless, it serves as an exquisite example to apply the
arsenal of phase reduction techniques because it exhibits a supercritical Hopf bifurcation. In particular, we consider on
the phase dynamics of complex networks of coupled Brusselators, thereby building on and generalizing earlier network
models [177,190,197–199].
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8.1. Single node dynamics

The chemical reactions of the Brusselator are given in terms of

A
ka

−−→ X (8.1a)

B + X
kb

−−→ Y + C (8.1b)

2X + Y
kc

−−→ 3X (8.1c)

X
kd

−−→ D , (8.1d)

which add up to A+ B → C +D. Each of the reactions (8.1)a–d) has a rate constant ka to kd. Assuming that the chemicals
A and B are in vast excess, their concentrations stay constant while the products C and D are constantly removed. The
concentrations of the autocatalytic reactants X and Y will respond sensitively to already weak perturbations. They will
reach an oscillatory state when the overall reaction is far from an equilibrium solution. (8.1) can thus be considered a
thermodynamically open system with the following rate equations for the (dimensionless) concentrations x = [X] and
y = [Y ]

ẋ = ka[A] − kb[B]x + kcx2y − kdx

ẏ = kb[B]x − kcx2y
(8.2)

with free parameters ka[A], kb[B], kc and kd. The rate equations (8.2) can be understood from the reactions (8.1) as follows:
Reaction a) leads to an increase of concentration x, which is proportional to the product of the rate ka and the concentration
[A] of chemical A. Likewise, reaction d) decreases concentration x at rate kd. Whenever the two chemicals B and X are
involved in reaction b), concentration y increases proportional to the rate kb times the concentrations of B and X and,
simultaneously, concentration x decreases of the same amount. Reaction c) can be understood in the same manner, only
that this reaction leads to an increase in x and a (balanced) decrease in concentration y.

8.2. Coupled Brusselators

We consider a network of Brusselators by coupling multiple nodes xk = (xk, yk) ∈ R2, k = 1, . . . ,N . For the sake
of illustration, we fix the rate constants kc = kd = 1 and consider a = ka[A], b = kb[B] ∈ R+ as possible bifurcation
parameters. Our Brusselator network model reads

ẋk = a − (b + 1)xk + x2kyk + κ gk,x(x1, . . . , xN , y1, . . . , yN )

ẏk = bxk − x2kyk + κ gk,y(x1, . . . , xN , y1, . . . , yN )
(8.3)

for some weak coupling strength 0 ≤ |κ| ≪ 1 and with coupling functions gk,x, gk,y : R2N
→ R.26

Without coupling, κ = 0, every node has a stable fixed point at (x0, y0) = (a, b/a), which undergoes a supercritical
Hopf bifurcation at b = 1 + a2. Introducing the new variables x̃k = xk − x0 and ỹk = yk − y0, we can shift the fixed point
to the origin, (x̃0, ỹ0) = (0, 0). When restricting the form of the coupling to be the sum of pairwise interactions between
nodes x̃k, x̃j, k ̸= j, the dynamics (8.3) becomes

ẋk = (b − 1)xk + a2yk +
b
a
x2k + 2axkyk + x2kyk +

κ

N

N∑
j=1

Ckjgx(xk, xj)

ẏk = −bxk − a2yk −
b
a
x2k − 2axkyk − x2kyk +

κ

N

N∑
j=1

Ckjgy(xk, xj) .

(8.4)

Here, we omitted the tildes for the sake of readability and assumed the coupling terms g = (gx, gy) to be identical across
nodes. The adjacency matrix C = {Ckj} specifies the connectivity between nodes xk and xj. We define the bifurcation
parameter as

µ =
b

1 + a2
− 1 (8.5)

and aim at transforming the dynamics (8.4) into Jordan real form, that is, the linearized dynamics with Jacobian L(µ)
around the fixed point (0, 0) is of the form(

ẋk
ẏk

)
=

(
ϱ(µ) −ω(µ)
ω(µ) ϱ(µ)

)(
xk
yk

)
.

26 In practice, coupling between (electro-) chemical oscillators can be realized by introducing particular elements in the originating electrical
circuit that connects the various network nodes. Adding, e.g., capacitors or resistors allows for chemical or electrical based coupling, respectively,
cf. Section 10.2.1 for a discussion on different coupling functions and see the work by Hudson, Kiss and co-workers for practical implementation [200–
203].
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To do so, we use the transformation matrix

T (µ) =
1

2(1+µ)(1+a2)

(
−
(
µ+ a2(2 + µ)

) √
4a2 − µ2(1 + a2)2

2(1 + µ)(1 + a2) 0

)
, (8.6)

where
√
4a2 − µ2(1 + a2)2/2 = ω(µ) is the emergent frequency of the oscillatory dynamics for µ ≥ 0 and ω0 = ω(0) =

a.27 The to-be-analyzed system then reads

ẋk = L(µ)xk + T−1N1(Txk;µ) + T−1N2(Txk;µ) +
κ

N

N∑
j=1

CkjT−1g(Txk, Txj) (8.7)

with linear part

L(µ) =
1
2

(
µ(1 + a2) −

√
4a2 − µ2(1 + a2)2√

4a2 − µ2(1 + a2)2 µ(1 + a2)

)
and nonlinearities

N1(x;µ) =

(
(1 + µ)(1 + a2) 2a 0

−(1 + µ)(1 + a2) −2a 0

)⎛⎝x2
xy
y2

⎞⎠ and N2(x;µ) =

(
0 1 0 0
0 −1 0 0

)⎛⎜⎝ x3

x2y
xy2

y3

⎞⎟⎠ .

8.3. Identifying the Hopf normal form

To prepare the different reduction techniques, in particular Kuramoto’s reductive perturbation and Poincaré’s nonlinear
transform approach, we first specify the parameters that are independent of the coupling; see also [12,204].

Kuramoto’s reductive perturbation. Following Section 7.1, the normal form parameters α, β in (7.4),

f (w, w̄) = αw − β|w|
2w ,

can be identified as

α =
1
2µ
(
1 + a2

)
+ ia and β =

1
2

(
1 +

2
a2

+ i
4 − 7a2 + 4a4

3a3

)
. (8.8)

Note that β is independent of the bifurcation parameter µ, whereas α depends on µ. Hence, varying µmay strongly affect
the normal form. The coupling parameters of order O(κ) can be computed using the expressions above once the type of
coupling has been established.

Poincaré’s reduction via nonlinear transforms. In a similar way, one can compute the (uncoupled part of the) normal
form according to the reduction approach via nonlinear transforms as in Section 7.2. The Poincaré transformation can
subsequently be employed to bring also the coupling terms into the desired form. In contrast to Kuramoto’s reductive
perturbation approach, no assumptions on the smallness of the bifurcation parameter µ have to be imposed since we do
not discard the dependence of nonlinear terms on µ. While this improves the accuracy by making both α and β depend
on µ, it yields equations that are too lengthy to report. Therefore, we will compare the different reduced phase dynamics
numerically and graphically.

8.4. Comparing analytic and numerical phase reductions

Considering one Brusselator as an integral element of a network of coupled oscillators, every oscillator is subject
to perturbations from the respective other nodes. The initial step is to investigate how (the phase dynamics of) an
individual Brusselator reacts to perturbations. For this, we determine the phase sensitivity function Z . We can explicitly
compute Z either analytically from the reduced Hopf normal form (8.8), or numerically from the original dynamics (8.7) by
employing the computational schemes outlined in Sections 3.3 and 3.4. The analytically derived phase sensitivity function
is sinusoidal and reads

Z(θ ) =
1
R

(
− sin θ − c2 cos θ
−c2 sin θ + cos θ

)
, where R2

=
Re(α)
Re(β)

and c2 =
Im(β)
Re(β)

, (8.9)

with α and β determined either along Kuramoto’s reductive perturbation approach or along the reduction approach via
nonlinear transforms. The Hopf normal form reduction imposes circular symmetry on the limit cycle, leading to the
characteristic shape of Z irrespective of the size of the bifurcation parameter µ. By contrast, the numerically computed
phase sensitivity function Z may exhibit higher harmonics for growing distances from the Hopf bifurcation point.

27 Note that for a ≥ 0 and |µ| ≪ 1, T (µ) can only become singular when µ = a = 0. In this case, det
(
T (0)

)
= 0, and the Jacobian L(0) = 0

vanishes, too.
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8.4.1. Linear coupling
A comparison of the different phase sensitivity functions provides only limited insight about the network’s phase

dynamics. Arguably more important is the shape of the entire phase interaction function H , which also accounts for
the type of coupling. For our network of Brusselators, we first consider global and linear diffusive coupling between
oscillators28

Ckjg(xk, xj) =

(
xj − xk

d(yj − yk)

)
(8.10)

with some coupling constant d ∈ R, cf. [177]; d ≥ 0 ‘weights’ the coupling between yj and yk relative to that between xj
and xk.

In the following, we briefly sketch how collective dynamics of weakly and linearly coupled Brusselators can be
predicted with the help of reduced phase models when varying the parameters a, d, and µ. We will focus on the boundaries
between stability and instability of the fully synchronized state and of the (balanced) two cluster state. These boundaries
are described in terms of the amplitudes an, bn of the first (n = 1) and second (n = 2) harmonics of the phase interaction
function (5.7),

H(ψ) =

∑
n≥0

an cos(nψ) + bn sin(nψ) .

Analytic phase reductions. Recall that the sought-for dynamics (6.10) reads

ẇk = αwk − β|wk|
2wk +

κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
.

This means that the parameters γ and δ remain to be specified. Using Kuramoto’s reductive perturbation approach for the
Brusselator network with linear coupling (8.10), we find

γ =
1
2

+
d
2

+ i
a
2
(1 + d) ,

δ = −
4 + a2(2 − 10d) + d + a4(−2 + 7d)

9a4
− i

4 + a2(2 − 11d) + 2a4(−1 + d) + 5d
9a3

.

(8.11)

By combining (8.8) and (8.11), we obtain

c1 =
Im(γ )
Re(γ )

=
−a(1 − d)

1 + d
,

c2 =
Im(β)
Re(β)

=
4 − 7a2 + 4a4

6a + 3a3
,

c3 =
Im(δ)
Re(δ)

=
a
[
4 + a2(2 − 11d) + 2a4(−1 + d) + 5d

]
4 + a2(2 − 10d) + d + a4(−2 + 7d)

,

(8.12)

where the constant radius is given by

R = µ

√
a2(1 + a2)
2 + a2

. (8.13)

From here we can derive the amplitudes a1, a2, b1, and b2 of H , cf. Section 4.4.
Analogously, one can derive the amplitudes of the phase interaction function H along Poincaré’s reduction via nonlinear

transforms. Although the parameters α, β, γ , δ are the main contributors to the reduced phase dynamics, the nonlinear
transform approach allows to include corrective coupling terms gklmn apart from γ = g0010 and δ = g0120, see Section 7.2.
Since the nonlinear transform approach also employs parameter-dependent transformations at every order, the resulting
amplitudes a1, a2, b1, and b2 can be expected more accurate than those obtained with the reductive perturbation approach
above. As said, the explicit parameter-dependent expressions of a1, a2, b1, and b2 are quite lengthy and, therefore,
we compare the outcome of these two phase reduction techniques graphically. To do so, we determined the stability
boundaries of the synchronized state and of the balanced two cluster state in the a–d plane for a fixed radius of the limit
cycle oscillations that emerged through the supercritical Hopf bifurcation, thereby following the presentation of Kori and
co-workers in [177]. We consider oscillations with radius R = 0.1 and R = 0.4. These values correspond to the distance
µ from the Hopf bifurcation point through the relation (8.13). By increasing a from 1 to 3, µ decreases from 0.49 to 0.14

28 Approximate linear coupling schemes have also been realized in experiments with electro-chemical oscillators, see, e.g., [177,205], which
underlines the relevance of this comparably simple type of coupling.
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Fig. 8.1. Stability of the globally synchronized state of the network of linearly coupled Brusselators is determined through the phase interaction
function H . If sgn(κ)H ′(0) > 0, the synchronized state is stable, otherwise unstable. In line with the subsequent analysis, we use κ < 0 and show
−H ′(0) color coded in the a–d plane for (a–c) small-amplitude oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for (d–f) large-amplitude
oscillations, R = 0.4, further away from the Hopf point. A change of stability occurs at H ′(0) = 0 (green), between positive (red) and negative
(blue) areas. The phase interaction function is reduced via (a, d) Kuramoto’s reductive perturbation approach, (b, e) Poincaré’s nonlinear transform
approach, and (c, f) the direct numerical method.

Fig. 8.2. Stable globally synchronized states (red) and stable balanced two-cluster states (blue) of the network of linearly coupled Brusselators
in the a–d plane for (a–d) small-amplitude, and for (e–h) large-amplitude oscillations with R = 0.1 and R = 0.4, respectively. The (negative)
coupling strength is set at κ = −0.001. Results are obtained via (a, e) Kuramoto’s reductive perturbation approach, (b, f) Poincaré’s nonlinear
transform approach, and (c, g) the direct numerical method, and compared against (d, h) simulations of the full network of N = 30 weakly coupled
Brusselators. In the full network, also stable three-cluster states occurred (green). The dashed and dashed–dotted lines represent the boundaries of
synchronization and two-cluster regions, respectively, using the numerical method.

for large-amplitude oscillations, R = 0.4, and from 0.12 to 0.035 for R = 0.1, respectively. The parameter d is varied in
the interval [0, 1]. The stability of the synchronized state can be directly assessed using the derivative H ′(0) of the phase
interaction function H , cf. Section 5.3.3. The results are given in Fig. 8.1. In brief, as H ′(0) changes signs, the synchronized
state switches from stable to unstable depending on the sign of the coupling κ . Recall that the stability boundary of the
synchronized state can be given by {b1 + 2b2 = 0} and the one of the two cluster state by {b2 = 0} for the Hopf normal
form network dynamics (6.10). The parameter regions where the fully synchronized and the two cluster states are stable
are depicted in Fig. 8.2 for the reductive perturbation (panels a and e) and the nonlinear transforms approaches (b and f).

The differences between the two analytic normal form reductions are barely visible for small-amplitude oscillations,
both in the H ′(0)- and in the cluster plots. Increasing the radius of oscillation leads to a minor reduction in size of the
synchronization region (depicted in red) for both reduction techniques. The boundary indicating the emergence of a stable
(anti-phase) two cluster state (blue) is slightly bent following the reductive perturbation approach, but becomes a straight
line in the nonlinear transform approach.
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Numerical phase reductions. We determined the properties of the Brusselator’s limit cycle, its phase sensitivity function
Z and the phase interaction function H numerically using either of the reduction techniques presented in Section 6.2.29
After extracting the amplitudes of the first and second harmonics of H , we identified the stability boundaries of the fully
synchronized and two cluster states, respectively. The results are summarized in Fig. 8.1 (panels c, f) and Fig. 8.2 (panels c,
g). When comparing the network predictions to those based on the analytic techniques, we found that for small-amplitude
oscillations the agreement appeared almost perfect and the stability boundaries are nearly identical. However, for large-
amplitude oscillations, the different techniques diverged significantly. While the synchronization region shrank according
to the analytic techniques, it enlarged following the numerical reduction. The boundary for the two cluster state slightly
rectified but it did not match either of the other two predicted lines.

Network simulations. To test whether the predictions based on the reduced phase models actually recover the original
network dynamics, we simulated the dynamics of N = 30 Brusselators coupled with some weak strength κ = −0.001.
The results are shown in Fig. 8.2 (panels d, h). For both small- and large-amplitude oscillations, the analytic as well as
the numeric phase reduction techniques performed sufficiently well. Yet, the numerical phase reduction outperformed
the analytic approaches for large-amplitude oscillations. This holds for synchronization as well as for two-cluster regions.
While both analytic techniques underestimated synchronization (smaller red area), the reductive perturbation approach
slightly overestimated the two-cluster region and the nonlinear transform approach underestimated it. Moreover, the
network simulations revealed a large area where a three-cluster state is stable for large-amplitude oscillations, Fig. 8.2
(panel h). By construction, none of the phase reduction techniques was able to detect this. More details about the numeric
implementations can be found in Appendix B.1.

8.4.2. Nonlinear coupling
An arguably more appealing problem is that of nonlinear coupling. To illustrate this, one can add an additional coupling

term g syn of the form

g syn(xk, xj) = ĝ(xk)S(xj) for all k ̸= j = 1, . . . ,N,

which may resemble a chemical synapse, see also Section 10.2.1. The function S = (Sx, Sy) is usually of sigmoidal shape,
which we simplify as a polynomial of some degree n ∈ N – this can be thought of as, e.g., a truncated Taylor expansion
of a sigmoidal function. As a particular example we choose the nonlinear coupling of the form30

g(xk, xj) = gdiff(xk, xj) + ĝ(xk)S(xj) =

(
xj − xk + g1x2j + g2xkxj + g3xkx2j + g4x2kxj

d(yj − yk)

)
(8.14)

with coupling parameter d as in the linear case above. The new nonlinear coupling terms are scaled by gj ∈ R, j = 1, . . . , 4.
Here, we already anticipate that for Kuramoto’s reductive perturbation approach, the term g4x2kxj will not influence the
resulting phase model because x2kxj is a resonant monomial.

Analytic phase reductions. Equivalent to the case of linear coupling, we display the predictions about synchronization in
Fig. 8.3 and about two cluster states in Fig. 8.4. The fixed coupling parameter values are

g1 = 0.3, g2 = −0.2, g3 = 0.35, g4 = 0.3

while d is varied in the interval [0, 1]. Again, the analytic predictions of network states for small-amplitude oscillations are
almost identical. However, for large-amplitude oscillations the differences between the two analytic techniques appear
more pronounced when compared to the linear coupling case. Following Poincaré’s nonlinear transform approach, the
synchronization region is enlarged and by the same token the two cluster state region shrinks, consisting of an almost
parallel band on the left and of a second, small triangular region in the top right corner of the a–d plane. The boundaries
predicted by the reductive perturbation method hardly change when increasing the radius R of the limit cycle.

Numerical phase reductions. As in the linear coupling case, we employed the numerical phase reduction technique to
determine the stability boundaries of the synchronized and two cluster states. The results are summarized in Fig. 8.3
(panels c, f) and Fig. 8.4 (panels c, g). Remarkably, the predictions for small-amplitude oscillations and close to the
Hopf bifurcation point agreed with those of the analytic reduction techniques. For the large-amplitude oscillations,
the predictions of the numerically reduced phase model resembled those of the nonlinear transform approach: The
synchronization regions grow, the two cluster region shrinks. Strikingly, the triangular region in the top right corner
has almost fully disappeared.

29 In particular, we employ the direct numerical method presented in Section 3.3.
30 Expanding both ĝ = (gx, gy) and S = (Sx, Sy) as power series in xk = (xk, yk) and xj = (xj, yj), respectively, we will consider in the following
only non-zero x-components of the particular form

gx(xk) = 1 + a1xk + a2x2k + O3(xk) and Sx(xj) = b1xj + b2x2j + b3x3j + O4(xj) .

In order to obtain (8.14), we choose the non-vanishing coefficients

a1 = g2/g1, a2 = g4/g1, b1 = g1, b2 = g1g3/g2.
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Fig. 8.3. Stability of the globally synchronized state of the network of nonlinearly coupled Brusselators is determined through the phase interaction
function H . If sgn(κ)H ′(0) > 0, the synchronized state is stable, otherwise unstable. In line with the subsequent analysis, we use κ < 0 and show
−H ′(0) color coded in the a–d plane for (a–c) small-amplitude oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for (d–f) large-amplitude
oscillations, R = 0.4, further away from the Hopf point. A change of stability occurs at H ′(0) = 0 (green), between positive (red) and negative
(blue) areas. The phase interaction function is reduced via (a, d) Kuramoto’s reductive perturbation approach, (b, e) Poincaré’s nonlinear transform
approach, and (c, f) the direct numerical method.

Fig. 8.4. Stable globally synchronized states (red) and stable balanced two-cluster states (blue) of the network of nonlinearly coupled Brusselators
in the a–d plane for (a–d) small-amplitude, and for (e–h) large-amplitude oscillations with R = 0.1 and R = 0.4, respectively. The (negative)
coupling strength is set at κ = −0.001. Results are obtained via (a, e) Kuramoto’s reductive perturbation approach, (b, f) Poincaré’s nonlinear
transform approach, and (c, g) the direct numerical method, and compared against (d, h) simulations of the full network of N = 30 weakly coupled
Brusselators. In the full network, also stable three-cluster states occurred (green). The dashed and dashed–dotted lines represent the boundaries of
synchronization and two-cluster regions, respectively, using the numerical method.

Network simulations. As before, we simulated the dynamics of N = 30 weakly coupled (κ = −0.001) Brusselators but
now employing the nonlinear coupling scheme. The results are depicted in Fig. 8.4 (panels d, h). We believe that they
speak for themselves as the reading agrees with the results for the case of linear coupling. Again, we refer to Appendix B.1
for more details about the numerical implementation.

8.5. Other analytic phase reduction techniques

8.5.1. Isochrons, Floquet eigenvectors, and SN × S1-symmetry
The first alternative analytic phase reduction techniques comprise of Winfree’s reduction via isochrons and Kuramoto’s

reduction via Floquet eigenvectors for a single oscillator and Ashwin & Rodrigues’ reduction via SN × S1-symmetry for a
network in Hopf normal form. As demonstrated in Section 6.3.2, all these techniques yield the same reduced phase model
provided that the network of coupled Brusselators has been put in Hopf normal form.
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Table 8.1
Phase models derived with different reduction techniques for linear coupling and near the Hopf bifurcation, µ = 0.0417. The oscillators’ natural
frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Symbols +/− denote the sign of each
amplitude. Their quantity corresponds to their influence on the dynamics, with +++ representing dominant contributions of order 1, while 0+/−

corresponds to amplitudes ≤10−3 . Parameters are (a, d) = (2.55, 0.65). Exact numerical values can be found in Appendix B.1.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.537 − − − + 0+ 0−

Nonlinear transform 2.524 − − − + + −

Direct averaging × × × × ×

Numerical/adjoint 2.474 ++ + 0− 0−

Table 8.2
Phase models derived with different reduction techniques for linear coupling and away from the Hopf bifurcation, µ = 0.1670. The notation is the
same as in Table 8.1. Parameters are (a, d) = (2.55, 0.65). Exact numerical values can be found in Appendix B.1.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.348 − − − + ++ −−

Nonlinear transform 1.832 − − − ++ ++ −−

Direct averaging × × × × ×

Numerical/adjoint 2.671 + + + ++ − −

8.5.2. Haken’s reduction via averaging
When introducing polar coordinates xk = (xk, yk) =

(
Rk cos(Ωt + φk), Rk sin(Ωt + φk)

)
with Ω = Im

(
λ1(0)

)
, one can

realize that the right-hand side of (8.7) is of order O(Rk). Assuming that 0 ≤ µ ≪ 1, i.e. close to the Hopf bifurcation,
the amplitude Rk ≪ 1 is small and we may consider to apply Haken’s averaging to (8.7) as outlined in Section 3.5. For
simplicity, we approximate all nonlinear terms in (8.7) by the corresponding expressions at the Hopf point, µ = 0, that is,
one can use T (0),N1(x; 0),N2(x; 0). Averaging over one period T = 2π/Ω yields the approximate phase and amplitude
dynamics

φ̇k = 1 +
a

8(1 + a2)
R2
k + O(κ)

Ṙk = Rk

[
−a + µ−

3a2

8(1 + a2)
R2
k

]
+ O(κ) ,

where O(κ) denotes the coupling terms. However, the uncoupled dynamics of the phase deviations φk is too large for
slight deviations from the offset frequency at the Hopf point. Moreover, the amplitude dynamics Rk does not exhibit a
non-trivial fixed point solution unless 0 < a ≤ µ ≪ 1 is very small, which stands in clear contrast to the well-established
supercritical Hopf bifurcation character of the Brusselator. Apparently, applying an ad-hoc averaging in the current setting
may yield spurious results.

8.6. Remarks

We analyzed the collective dynamics of a network of weakly coupled Brusselators with respect to (stable) synchronized,
incoherent, and balanced two-cluster states. Numerical phase reduction techniques are perfectly able to detect the correct
dynamical regimes as revealed by full network simulations. Analytic phase reduction techniques, by contrast, capture
the actual collective dynamics only in a close neighborhood to the Hopf bifurcation point. This holds across linear and
nonlinear coupling schemes.

For illustration, we fixed the parameter value a = 2.55 and investigated numerically the resulting phase model in terms
of the frequency term and the Fourier coefficients of first and second harmonics of the reduced phase interaction function
H . For linear coupling and close to the Hopf bifurcation point, the analytic reduction techniques do not only capture
the correct collective dynamics, but they also provide the same order of amplitudes as obtained by numerical methods,
see Table 8.1. Away from the Hopf point, the reduction techniques still perform considerably well, but slightly incorrect
estimations of the first and second harmonics result in different predictions: according to the reductive perturbation
approach a too strong second harmonic forces the phase dynamics into an incoherent state, whereas both the nonlinear
transform approach and the numerical reduction correctly capture synchronization of the network, cf. Fig. 8.2 and
Table 8.2.

Nonlinear coupling, by contrast, affects the performance more. For small-amplitude oscillations, the differences in sign
of the b2 values in Table 8.3 may be due to numerical artifacts, so that the (wrongly) predicted incoherent state by the
nonlinear transform approach has to be considered with care in contrast to the correct prediction of a stable two-cluster
state by the reductive perturbation approach and the numerical reduction. For large-amplitude oscillations, however, the
phase reduction techniques diverge as shown in Fig. 8.4. Since the nonlinear transform approach respects the parameter-
dependence in the normal form reduction, it outperforms the reductive perturbation approach and largely retrieves the
results of the numeric reduction technique, see Table 8.4, where the amplitudes of first and second harmonics agree.
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Table 8.3
Phase models derived with different reduction techniques for nonlinear coupling and near the Hopf bifurcation, µ = 0.0417. The oscillators’ natural
frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Symbols +/− denote the sign of each
amplitude. Their quantity corresponds to their influence on the dynamics, with +++ representing dominant contributions of order 1, while 0+/−

corresponds to amplitudes ≤10−3 . Parameters are (a, d) = (2.55, 0.75). Exact numerical values can be found in Appendix B.1.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.537 − − − −− 0+ 0+

Nonlinear transform 2.524 − − − −− + 0−

Direct averaging × × × × ×

Numerical/adjoint 2.474 ++ − 0− 0+

Table 8.4
Phase models derived with different reduction techniques for nonlinear coupling and away from the Hopf bifurcation, µ = 0.1670. The notation is
the same as in Table 8.3. Parameters are (a, d) = (2.55, 0.75). Exact numerical values can be found in Appendix B.1.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.345 − − − −− + 0+

Nonlinear transform 1.832 − − − ++ ++ −

Direct averaging × × × × ×

Numerical/adjoint 2.671 + + + ++ − −

We would like to add a final remark on phase reductions of the Brusselator. While we concentrated on the mere
rate equations (of the mean field), there also exists a natural spatio-temporal extension of the Brusselator model into a
two-component reaction–diffusion system. The Brusselator as a reaction–diffusion system allows for so-called chemical
waves and other pattern formation, such as, e.g., traveling fronts or rotating spirals in an extended medium [12]. Not
only is it possible to define a phase for rhythmic patterns in extended media, but also to derive the corresponding phase
dynamics from the underlying spatio-temporal dynamics, as has been successfully demonstrated by Nakao, Kawamura
and co-workers [151,154,164]. This strategy may be used to determine a meaningful phase dynamics of periodic fluid
flows [206]. It has been extended to reduce the phase dynamics of limit cycle solutions to general partial differential
equations [207]. In the same way, the phase dynamics of collective oscillations of globally coupled noisy elements may
be derived, given that these oscillations are solutions to a Fokker–Planck equation [150,208]. We refer the interested
reader to the literature for more details about phase reduction of oscillatory spatio-temporal dynamics, and stick here to
non-extended systems.

9. Networks of Wilson–Cowan neural masses

As a second example for a network of coupled oscillators, we use the Wilson–Cowan neural mass model as a
representative example for a smooth neural oscillator.31 In their pioneering work, Wilson and Cowan derived a firing
rate model for a neural population consisting of Ne excitatory and Ni inhibitory neurons [68,69]. Denoting the firing rate
of a single excitatory (inhibitory) neuron by en(in), the corresponding mean firing rates of the excitatory and inhibitory
parts of the population are the averages E = (1/Ne)

∑Ne
n=1 en and I = (1/Ni)

∑Ni
n=1 in, respectively. The firing rate of a

single neuron is given as the number of spikes per time. A neuron elicits a spike whenever the sum over all of its inputs
exceeds a certain threshold θn. We assume that every neuron receives inputs from all other neurons within the population.
Every excitatory neuron receives some additional external input pn, whose average is given by P = (1/Ne)

∑Ne
n=1 pn. For

a particular (unimodal) distribution of threshold values θn across the population, one can assign a sigmoidal activation
function32 S to the population dynamics [68]. Without loss of generality, we choose S [x] = 1/(1 + e−x) and denote
the population-specific threshold values by ΘE and ΘI for the excitatory and inhibitory parts, respectively. Then, the
coarse-grained dynamics of the mean firing rates of a neural population obeys the form

µE Ė = −E(t) + [1 − rEE] S [aE (cEEE − cIE I −ΘE + P)] ,

µI İ = −I(t) + [1 − rI I] S [aI (cEIE(t) − cII I −ΘI)] .
(9.1)

The coupling parameters ckj with k, j ∈ {E, I} indicate the strength of interaction between the different parts within
the population, and aE, aI define the slopes of the transfer function S. The terms [1 − rEE] and [1 − rI I] represent the
refractory dynamics of the excitatory and inhibitory parts, respectively. They track the period of time during which the
corresponding cells are incapable of being stimulated after an activation. We will neglect this term and set rE = rI = 0,
thereby following Pinto and co-workers [210], who showed that the refractory terms effectively rescale the parameters of

31 By smooth we refer to the smooth limit-cycle trajectory in the two-dimensional coordinate plane as in case of the Wilson–Cowan model. By
contrast, integrate-and-fire models present an example for non-smooth neural oscillators, as the reset mechanism leads to discontinuities along the
trajectory.
32 Other names for the activation function S are transfer or gain function. The introduction of S may alternatively be motivated starting from a
single neuron level and along an ergodicity argument, as the time average of individual, saturating firing rates equals the population average [209].
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Fig. 9.1. Network of two coupled Wilson–Cowan neural masses. Each neural population k consists of excitatory and inhibitory parts (Ek and Ik),
which are internally coupled with strengths cij , i, j ∈ {E, I}. Moreover, the population receives an external input Pk . Interaction between two neural
masses k, j occurs via their respective excitatory parts only, where Ckj denotes the connectivity whether node k receives input from node j.

the nonlinear transfer function S. For the sake of simplicity, we further consider the time scales µE = µI = 1. Depending
on the choice of parameters, this model can exhibit rich dynamics such as self-sustained oscillations and multi-stability,
see, e.g., [46,68,211]. Here, we restrict the parameter values to the dynamical regime in which every (E, I) population
displays stable limit cycle oscillations.

To build a cortical network model, we connect N different (Ek, Ik) populations of excitatory and inhibitory neurons,
k = 1, . . . ,N , via their excitatory parts [32,33,212]; see Fig. 9.1 for illustration. The neural mass dynamics of node k reads

Ėk = −Ek + S

⎡⎣aE

⎛⎝cEEEk − cIE Ik −ΘE + Pk +
κ

N

N∑
j=1

CkjEj

⎞⎠⎤⎦
İk = −Ik + S [aI (cEIEk − cII Ik −ΘI)] .

(9.2)

0 ≤ κ ≪ 1 denotes the overall coupling strength and C = {Ckj}k,j is an adjacency matrix indicating structural connectivity
between two cortical regions k and j. The population specific average input Pk to the respective excitatory subpopulations
may vary across the different cortical regions.

9.1. Single node dynamics

As in the case of the Brusselator, first we discuss the dynamics of a single unit using dynamics (9.2) without coupling,
i.e. for κ = 0. Following [32,33], we fix several parameters to physiologically motivated values

aE = 1.2, aI = 2, cEE = cEI = 10, cIE = 6, cII = 1, ΘE = 2.5, ΘI = 3.5 , (9.3)

unless stated otherwise. Furthermore, we consider Pk to represent external inputs. Taking Pk as the bifurcation parameter
results in the bifurcation diagram depicted in Fig. 9.2.33

9.2. Coupled Wilson–Cowan neural masses

We are interested in the dynamics of a network of coupled Wilson–Cowan neural masses of the form (9.2). The
interplay between the excitatory and inhibitory parts of a single neural mass is governed by the coupling setup sketched in
Fig. 9.1. We couple distinct neural masses only via their excitatory parts, which can be justified as an appropriate rescaling
of the population-internal coupling parameters ckj may compensate for inputs to the inhibitory parts. The adjacency matrix
C = {Ckj} defines structural links between the different neural masses. While the coupling term in (9.2) of interconnected
neural masses appears natural when compared to the internal coupling structure of a single neural mass, it deserves some
discussion.

In Wilson and Cowan’s original work [68], the sigmoid function was constructed in such a way that in the absence
of external influences the baseline activity state (Ek, Ik) = (0, 0) is a fixed point. In our formulation, where we
follow [32,46,168], however, the sigmoid function takes on a slightly different form and a zero fixed point solution is

33 Despite the lack of symmetry, one can realize the resemblance with Hoppensteadt and Izhikevich’s bifurcation diagram [Fig. 2.12,46] with ΘE,I
as key parameters, as well as with the derivation by Borisyuk and Kirillov [211], who used P = Pk and c3 = cEI as key parameters.
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Fig. 9.2. Bifurcation diagram of the uncoupled Wilson–Cowan model (9.2) with respect to the bifurcation parameter Pk . By increasing Pk , one can
find four qualitatively different dynamical regimes possible; see inlets — filled (empty) dots: stable (unstable) fixed points, red: stable limit cycle. A
saddle–node (SN) bifurcation at Pk ≈ −0.3937 initiates bistability of two stable fixed-points. The stable fixed point emerging from the SN bifurcation
undergoes a supercritical Hopf bifurcation (HB) at Pk ≈ −0.3663, while the saddle point coincides with the other stable fixed point and disappears in
another SN bifurcation at Pk ≈ −0.2914. Up to the SN bifurcation at Pk ≈ 1.3272 away from the stable limit-cycle. The latter is the unique attractor
of the dynamics. The collision of the saddle point with the limit-cycle in a homoclinic bifurcation (HC) at Pk ≈ 1.3648 terminates the oscillatory
regime. BT — Bogdanov–Takens point, CP — cusp point, SNL — saddle–node loop bifurcation, SNIC — saddle–node on invariant cycle bifurcation.

no longer feasible. Hence, external perturbations through mutual interaction have a non-trivial impact: If we assume that
all neural masses reside in a stationary state with mean (excitatory) firing rate E0

k > 0 in the absence of coupling, then
as soon as we increase the coupling strength, κ > 0, all neural masses will experience a sudden perturbation of strength
κ
∑

j CkjEj > 0 even if they are all identical. Not the small relative distance xj := Ej −E0
j to the fixed point, but its absolute

value Ej drives the network dynamics. For this reason, we use a direct coupling in form of

κ

N

N∑
j=1

CkjEj ↦−→
κ

N

N∑
j=1

Ckj
(
Ej − E0

j

)
=:

κ

N

N∑
j=1

Ckjxj , (9.4)

where E0
j is the unstable fixed point solution of neural mass (Ej, Ij) in the absence of coupling. In general, E0

j = E0
j (Pj)

depends on the heterogeneous input Pj = PH +µ, where PH denotes the value of external input at the supercritical Hopf
bifurcation, cf. Fig. 9.2. We can thus assume the deviation Ej − E0

j (PH + µ) =: xj = xj(µ) to depend on the distance µ
from the Hopf bifurcation. When expanding E0

j around PH , that is, for E0
j (PH +µ) = E0

j (PH )+O(µ) with Ẽ0
j := E0

j (PH ), the
coupling term (9.4) reduces to

κ

N

N∑
j=1

Ckj

(
Ej − Ẽ0

j

)
+ O(κµ) . (9.5)

Consequently, we replace the coupling term in the dynamics (9.2) by

κ

N

N∑
j=1

CkjEj =
κ

N

N∑
j=1

Ckj
(
xj + E0

j

)
↦−→

κ

N

N∑
j=1

Ckjx̃j (9.6)

with x̃j = xj(0) = Ej − Ẽ0
j . In the following, we will consider the Wilson–Cowan dynamics (9.2) with coupling (9.6) and

discard the tildes for conciseness.

9.3. Identifying the Hopf normal form

The choice of model parameters guaranteed oscillatory dynamics of the (uncoupled) Wilson–Cowan neural masses
close to a supercritical Hopf bifurcation. At the Hopf bifurcation, stable oscillations emerge around an unstable fixed point
and the eigenspectrum of the linearized dynamics shows the specific features of this type of bifurcation: the Jacobian of the
(uncoupled) Wilson–Cowan dynamics (9.2) evaluated at the unstable fixed point (E0

j , I
0
j ) has a pair of complex conjugate

eigenvalues with negative real part, which corresponds to the distance µ = Pj − PH from the Hopf bifurcation point.
Changing the parameter Pj leads to a different position (and size and shape) of the limit cycle as well as to a different
position of the fixed point, that is,

(
E0
j (µ), I

0
j (µ)

)
:=
(
E0
j (PH + µ), I0j (PH + µ)

)
. We express the dynamics in terms of the

deviations xk(µ) = Ek − E0
k = Ek − E0

k (µ) and yk(µ) = Ik − I0k = Ik − I0k (µ) around the unstable fixed points. Effectively, we
shift the fixed point such that the Hopf bifurcation occurs at the origin in phase and parameter space. The transformed
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system with coupling (9.6) reads

ẋk = −
(
xk + E0

k (µ)
)
+ S

[
ax
(
c1
(
xk + E0

k (µ)
)
− c2

(
yk + I0k (µ)

)
−Θx + µ+

κ

N

N∑
j=1

Ckjxj
)]

ẏk = −
(
yk + I0k (µ)

)
+ S

[
ay
(
c3
(
xk + E0

k (µ)
)
− c4

(
yk + I0k (µ)

)
−Θy

)]
,

(9.7)

where we changed the notation of the parameters: (aE, aI , cEE, cIE, cEI , cII ,ΘE,ΘI ) ↦→ (ax, ay, c1, c2, c3, c4,Θx,Θy). Since
(E0

k (µ), I
0
k (µ)) solves (9.7), one can simplify the transformed dynamics for weak coupling 0 ≤ κ ≪ 1 and sufficiently small

µ ≪ 1 by Taylor expanding the sigmoid function S around the fixed point:

ẋk = −xk +

∞∑
n=1

1
n!

S
(n) [χx,k

]
· anx
(
c1xk − c2yk +

κ

N

N∑
j=1

Ckjxj
)n

ẏk = −yk +

∞∑
n=1

1
n!

S
(n) [χy,k

]
· any (c3xk − c4yk)n .

(9.8)

In (9.8) we abbreviated

χx,k = χx,k(µ) = ax
(
c1E0

k (µ) − c2I0k (µ) −Θx + µ
)

χy,k = χy,k(µ) = ay
(
c3E0

k (µ) − c4I0k (µ) −Θy
)
.

and S(n) refers to the nth derivative of S. Unfortunately, the sigmoidal shape of the original dynamics (9.2) does not allow
for a simplified form of (E0

k (µ), I
0
k (µ)) in µ, but one can find numerically a polynomial fit

E0
k (µ) = E0

k (0) + µϑE + O2(µ)

I0k (µ) = I0k (0) + µϑI + O2(µ) ,

where
(
E0
k (0), I

0
k (0)

)
denotes the fixed point at the Hopf bifurcation, which corresponds to (xk, yk) = 0. At this point, the

Jacobian of the dynamics (9.2), or (9.7), has purely complex eigenvalues ±iω0. When discarding higher-order terms in µ
and κ , we have

ẋk = −xk +

∞∑
n=1

1
n!

(
S
(n) [χx] + µS(n+1) [χx] ax (c1ϑE − c2ϑI + 1)

)
· anx (c1xk − c2yk)n

+ κ

∞∑
m=0

1
m!

S
(m+1) [χx] · am+1

x (c1xk − c2yk)m ·

N∑
j=1

Ckj

N
xj + O2(µ) + O2(κ) + O(κµ)

ẏk = −yk +

∞∑
n=1

1
n!

(
S
(n) [χy

]
+ µS(n+1) [χy

]
ay (c3ϑE − c4ϑI)

)
· any (c3xk − c4yk)n + O2(µ) ,

(9.9)

where χx = χx,k(µ = 0) and χy = χy,k(µ = 0).
Considering from now on only weak coupling,34 we truncate the Taylor expansion in (9.9) at third order. With

Sxn =
1
n!

S(n)
[
χx,k

]
anx and Syn =

1
n!

S(n)
[
χy,k

]
any ,

we can rewrite the dynamics (9.9) as

ẋk = f1(xk, yk) + κ gk(X) + O2(κ) ,
ẏk = f2(xk, yk) ,

(9.10)

34 At this point, we would like to add that in the limit of weak coupling, only monomials of the form xaky
b
kx

c
j with c = 0 or c = 1 appear in the

coupling term for the kth neural mass. That is, the coupling effect from another neural mass j is at most linear and of order O(xj). Still, the mixed
terms xaky

b
kx

c
j may lead to nonlinear coupling effects. One may ask: When do these nonlinear coupling effects invoke non-negligible phase–amplitude

interactions? Or, what is the upper boundary for the weak coupling approximation? To the best of our knowledge, as of yet there is no general
answer to this question, cf. Section 6.1. Stronger coupling, or strong perturbations, induce amplitude effects. But at which critical value of κ these
amplitude modulations fail to admit a unique phase description of the single units, remains an open problem. Strikingly, the critical value is exceeded
by far when oscillatory states lose stability and eventually cease to exist. Such a scenario has been coined amplitude death, which has attracted
much attention in the literature. Analytic results about such coupling induced effects are limited to very small network sizes of a few coupled
oscillators. For larger network sizes amplitude death states elude analytical tractability, but their occurrence in networks of coupled oscillators is
reported in numerical studies [213–217].
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where for X = (x1, . . . , xN ) and xk = (xk, yk) the functions f1, f2 and gk are given as

f1(x, y) = −x + Sx1(c1x − c2y) + Sx2(c21x
2
− 2c1c2xy + c22y

2) + Sx3(c1x − c2y)3 ,

f2(x, y) = −y + Sy1(c3x − c4y) + Sy2(c23x
2
− 2c3c4xy + c24y

2) + Sy3(c3x − c4y)3 ,

gk(X) = Sx1xk + 2Sx2(c1xk − c2yk)xk + 3Sx3(c1xk − c2yk)2xk .

The bar · k denotes the (weighted) average, xk =
1
N

∑N
j=1 Ckjxj. In more compact form, we have for weak non-diffusive

coupling between two Wilson–Cowan nodes x = (x, y) and x′
= (x′, y′) the dynamics

ẋ = Jx + f (x;µ)+ κ g
(
x, x′

)
, (9.11)

with

f (x;µ)=N1

⎛⎝x2
xy
y2

⎞⎠+N2

⎛⎜⎝ x3

x2y
xy2

y3

⎞⎟⎠ and g(x, x′
;µ)=

⎡⎣G1 + G2

(
x 0
y 0

)
+ G3

⎛⎝x2 0
xy 0
y2 0

⎞⎠⎤⎦(x′

y′

)
.

In these expressions, we abbreviated the matrices

J =

(
−1 + Sx1c1 −Sx1c2

Sy1c3 −1 − Sy1c4

)
, N1 =

(
Sx2c21 −2Sx2c1c2 Sx2c22
Sy2c23 −2Sy2c3c4 Sy2c24

)
,

N2 =

(
Sx3c31 −3Sx3c21c2 3Sx3c1c22 −Sx3c32
Sy3c33 −3Sy3c23c4 3Sy3c3c24 −Sy3c34

)
,

G1 = Sx1

(
1 0
0 0

)
, G2 = 2Sx2

(
c1 −c2
0 0

)
, G3 = 3Sx3

(
c21 −2c1c2 c22
0 0 0

)
.

Similar to the Brusselator model, also here the Jacobian J = J (µ) is not in Jordan real form. Using the eigenvectors
associated with eigenvalues λ(µ) = ϱ(µ) ± iω(µ) where ω(0) = ω0, we can transform J such that

L = T−1JT =

(
ϱ −ω

ω ϱ

)
. (9.12)

Finally, we can rewrite (9.11) as

ẋ = Lx + T−1f (Tx;µ)+ κ T−1g
(
Tx, Tx′

)
, (9.13)

The dynamics (9.13) exhibits qualitatively the same behavior as (9.11) but due to the Jordan real form of (9.12) the circular
symmetry of the limit cycle is now induced on the full dynamics. Eq. (9.13) can be extended to the full network dynamics
as in (9.10).

Our pre-processing is mandatory for bringing the Wilson–Cowan dynamics (9.2) into Hopf normal form. Analogously
to Section 8.4, we apply Kuramoto’s reductive perturbation approach and Poincaré’s reduction via nonlinear transforms
to the (truncated) Wilson–Cowan network dynamics (9.11)/(9.13) to obtain the parameter values α, β, γ and δ of the
corresponding network Hopf normal form (6.10),

ẇk = αwk − β|wk|
2wk +

κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
.

Next, we can reduce a phase model and infer the network dynamics based on the shape of the resulting phase interaction
function H . The so-obtained phase dynamics along either of the two analytic phase reduction techniques will be compared
against the numerically reduced phase dynamics as well as against the phase model obtained through Haken’s averaging
approach, which yields a Kuramoto-like phase model.

9.4. Haken’s reduction via averaging

The Wilson–Cowan dynamics allows for a meaningful reduction along Haken’s averaging approximation. Given the
dynamics (9.13) in Jordan real form, one can capitalize on the (nearly) circular shape of oscillations and insert the ansatz
xk = (xk, yk) = (Rk cos(Ωt + φk), Rk sin(Ωt + φk)), a so-called van der Pol transformation, where Rk, φk are amplitude and
phase (deviations) of the oscillations at node k, which are slowly varying with respect to the (mean) frequency Ω . We
define the central frequency Ω via the eigenvalues at the Hopf point, that is, Ω = ω(0). In this way, we obtain an analytic
form of the phase dynamics θ̇k = Ω+ φ̇k without a laborious transformation into Hopf normal form. However, as we step
over a careful Hopf normal form reduction, one ought to realize that the resulting phase model is only an approximate
description of the actual phase dynamics. Nonetheless, the smaller the amplitude of oscillations, the more accurate the
phase model.
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Near the onset of oscillations through a supercritical Hopf bifurcation, Rk ≪ 1 is small and, thus, the right-hand side
of (9.13) is at least of order O(Rk). Given the slower time scales of Rk and φk, one can average over one cycle T = 2π/Ω .
In line with [212], this direct averaging of the dynamics (9.13) yields the dynamics of the phase variable θk = Ωt + φk

θ̇k = ϖk +

N∑
j=1

Dkj sin(θj − θk +∆kj) (9.14)

with ϖk = ωk + O(Rk); we used the following expressions:

Dkj =
κ

2N
Sx1ΛkCkj

Rj

Rk
, ∆kj = tan−1(ρk) ,

Λ2
k = 1 + ρ2

k , ρk = ω−1
k (Sx1c1 + Sy1c4) ,

ω2
k = det J − (tr J )2/4 = Sx1Sy1c2c3 − (Sx1c1 + Sy1c4)2/4 .

Note that ωk is the imaginary part of the eigenvalue of J . Near the Hopf bifurcation, we can hence safely assume that
ωk ≈ Ω . Note further that since Sx1, Sy1, c1, c4, ωk ≥ 0, we have ρk ≥ 0 and ∆kj ∈ (0, π/2). Therefore, (9.14) resembles the
Kuramoto–Sakaguchi model (5.8) with phase lag |∆kj| ≤ π/2, so that we can expect a transition to full synchronization if
the coupling strength κ exceeds a critical value κc = κc(δ), where δ denotes the width of distribution of the natural
frequency terms ωk. In case that the setup of a Wilson–Cowan neural mass is fully symmetric, that is, in particular
c1 = −c4, we find for the resulting phase dynamics that ρk → 0, and we retrieve the conventional Kuramoto model.

The here-presented averaging of the Wilson–Cowan network dynamics yields the phase dynamics (9.14), whose phase
interaction function only consists of first harmonics. The absence of higher harmonics hampers complex network dynamics
such as, e.g., clustering effects. This is in remarkable contrast to the other phase models that have been derived from
dynamics in Hopf normal form. The main reason is that the Hopf normal form reduction induces circular symmetry also on
the coupling function gx and the corresponding transformation leads to resonant monomials of first and third order.35 On
the other hand, the direct averaging approach does not employ transformations aimed at establishing resonant monomials.
In fact, the coupling of the dynamics (9.13) remains linear in x′ and all nonlinear coupling terms eventually average out at
zero. Irrespective of this, however, the direct averaging along Haken’s method stands out for its simplicity and its potential
to be applied in a straightforward way.

9.5. Analytic and numerical phase reductions

The ultimate goal of any of the phase reduction techniques introduced above is to simplify the network dynamics of
coupled oscillators, here, of (weakly) coupled Wilson–Cowan neural masses, in terms of a corresponding phase model
(5.6),

θ̇k = ω +
κ

N

N∑
j=1

CkjH
(
θk − θj

)
.

For simplicity, we consider all nodes to be identical, in particular, they have the same natural frequency ωk = ω, and
that they are globally, or all-to-all, coupled with adjacency values Ckj = 1 for all j ̸= k. The factor 1/N is for convenience
and ensures that the phase model is well-behaved in the limit N → ∞. The phase interaction function H(ψ) admits a
representation as a Fourier series (5.7),

H(ψ) =

∑
n≥0

an cos(nψ) + bn sin(nψ) = a0 + a1 cos(ψ) + b1 sin(ψ) + a2 cos(2ψ) + b2 sin(2ψ) + · · · .

In the following, we will highlight that phase reduction can, in general, be highly parameter-sensitive. Close to
particular bifurcation curves in parameter space, the obtained phase model coincides with analytic predictions about the
associated normal form. With growing distance to the bifurcation boundaries, however, higher harmonics in the reduced
phase model emerge that give rise to non-trivial and complex collective behavior. Subsequently, we will compare the
results of the analytic phase reduction techniques (Kuramoto’s reductive perturbation, Poincaré’s reduction via nonlinear
transforms and Haken’s averaging – the latter here denoted as direct averaging) with those of numerical phase reduction
techniques (here we complement the findings of the adjoint method using XPPAUT with those of the direct method; as both
reduction techniques show consistent results, we will refer to them interchangeably as the numerical/adjoint method). We
will consider the dynamics close to the Hopf bifurcation, i.e. for small µ ≪ 1. After that, we will treat the case of larger
distances, i.e. further away from the Hopf point. To anticipate, analytically derived phase dynamics will diverge from the
numerically established ones and one may wonder which technique reveals the true collective behavior of the oscillatory
network.

35 Recall that the third order monomial most significant for the coupling term in the phase dynamics is nonlinear in the respective other oscillator
x′ .

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Fig. 9.3. Computing the phase interaction function: (a) Trajectory of the Wilson–Cowan dynamics in phase space, (b,c) numerically determined phase
sensitivity function Z = (ZE , ZI ) as solutions to the adjoint problem, (d) coupling term evaluated at the limit cycle, and (e) phase interaction function
H for different input value parameters Pk ∈ (−0.366,−0.36) corresponding to values µ ∈ (0.0003, 0.0063). As shown in (a), the limit cycle solution
of the underlying (and uncoupled) Wilson–Cowan model changes its shape. Its amplitude grows monotonically. The shape of the phase sensitivity
function deviates from the initial shape, and higher harmonics seem to occur; see panels (b) and (c) – we refer to the two components of the
phase sensitivity function as adjoints, underlying the here-applied numerical reduction technique. The phase interaction function depends on both
the phase sensitivity function and the coupling term and absorbs their variation (e). At a particular parameter value Pk , the derivative of H at the
origin, H ′(0), changes signs. While a network of identical and globally coupled units will fully synchronize if H ′(0) > 0, this state loses stability if
H ′(0) becomes negative. Hence, a small parameter change at about Pk = −0.364 will cause qualitatively different network behavior — when using
XPPAUT, the change from H ′(0) > 0 to H ′(0) < 0 already appears at Pk = −0.3658 and not at Pk = −0.364, which we derived using the adjoint
solver implemented in Matlab.

9.5.1. Parameter-sensitivity of phase reduction
Synchronization transition. Close to a bifurcation boundary in parameter space, one can capitalize on center manifold and
normal form theory to distill characteristic features of the underlying dynamics, which allows for a qualitative description
of the observed behavior [64]. As demonstrated in Section 4.4, for dynamics close to a (supercritical) Hopf bifurcation, the
phase sensitivity function Z has the characteristic purely sinusoidal form − sin(θ ). Moreover, the coupling function g(x, x′)
when evaluated at the respective limit cycles xc, x′c that are (in a leading order approximation) circular near the Hopf
bifurcation, takes on a form proportional to 1 + cos(θ ). The resulting phase interaction function H of the corresponding
phase model thus becomes

H(ψ) ∝
1
2π

∫ 2π

0
− sin(θ ) ·

[
1 + cos(θ + ψ)

]
dθ =

1
2 sin(ψ) .

Consequently, the slope of H at ψ = 0 is positive (H ′(0) = 1/2) so that coupled (identical) oscillators that are all very
close to a Hopf bifurcation, are expected to perfectly synchronize with each other.

This result holds in theory exactly at the Hopf bifurcation, µ = 0, and in practice also in the immediate vicinity of the
Hopf bifurcation. An obvious question is how far this ‘immediate vicinity’ can be stretched. Slightly increasing the distance
µ > 0 from the Hopf bifurcation point, will change the shape of the limit cycle and thus also lead to different properties
of the corresponding phase dynamics. In Fig. 9.3 we illustrate how such a parameter change affects the Wilson–Cowan
dynamics and the reduced phase model. The slope of the phase interaction function H switches from positive to negative
at a parameter value as small as 0 < µ < 0.01, and the network state will transition from synchronization to incoherence.
Hence, we can conclude that phase reduction is highly parameter-sensitive.

Emergence of higher harmonics. Already for small parameter changes, higher harmonics occur in the phase sensitivity
function Z and/or in the coupling term. Higher harmonics will eventually find their way also in the phase interaction
function H and may thus affect the (predictions about the) collective behavior of the network. The occurrence of higher
harmonics is not restricted to the example of a Hopf bifurcation, but may be found across any kind of bifurcation. In fact,
this phenomenon is not a peculiar feature of the Wilson–Cowan neural mass model, but appears generic across neural
oscillator models, see, e.g., Figure 4 in [64]. There, Brown and co-workers already reported changing phase sensitivity
functions Z , but did not explicitly point to a specific parameter-sensitivity.

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Fig. 9.4. Phase sensitivity functions (numerically computed via the adjoint method) quickly diverge from the analytically predicted shape, which
are sinusoidal (Hopf), exponential (homoclinic) and cosinusoidal/non-negative (SNIC), and exhibit non-negligible higher harmonics. Phase sensitivity
function are normalized in amplitude. Colors represent the distance to the respective bifurcation points in parameter space: µ = 1/10000 (blue),
µ = 1/1000 (red), µ = 1/100 (yellow), µ = 1/10 (violet). Insets for the homoclinic bifurcations show the first two graphs in log-scale and display
exponential decay. The model parameters can be found in Appendix B.2.

Fig. 9.5. Higher harmonics in the phase sensitivity function of the Wilson–Cowan neural mass model for varying input Pk . (a) Input Pk such that
oscillations emerge through a supercritical Hopf bifurcation and cease through a homoclinic bifurcation. (b) Oscillations both emerge and cease
through a SNIC bifurcation; cf. Fig. 9.2.

Extending the analysis in Fig. 9.3, we numerically determined the adjoint solution for the phase sensitivity function
Z of the Wilson–Cowan dynamics and investigated how its shape changed when further increasing the input parameter
Pk from the three generic types of bifurcation: the Hopf, homoclinic and SNIC bifurcations appear for different parameter
values in the Wilson–Cowan model, cf. Fig. 9.2. Increasing the distance from the respective bifurcation points in parameter
space from µ = 1/10000 to µ = 1/10, Fig. 9.4 illustrates how quickly the shape of the phase sensitivity function changes
and higher harmonics occur.

We also analyzed the reduced phase sensitivity functions Z in Fourier space to account for the occurrence of higher
harmonics. To do so, we varied the input parameter Pk between two bifurcation boundaries where the Wilson–Cowan
dynamics exhibit stable limit-cycle oscillations, see Fig. 9.2. Fig. 9.5 (panel a) shows the power of the first five harmonics
for parameter values where oscillations emerge via a Hopf and cease through a homoclinic bifurcation. Although the first
harmonics is the dominant one for all parameter values Pk, the analysis remains quite insightful. Directly on the Hopf
bifurcation at Pk ≈ −0.3663, the first harmonics is not only dominant, but also exclusive: the amplitudes of the second
and higher harmonics converge to zero faster than exponentially. This is perfectly in line with the analytically predicted
purely sinusoidal shape of the phase sensitivity function Z . On the other side, the nature of the homoclinic bifurcation
becomes also apparent. All harmonics tend to a non-vanishing constant amplitude, giving rise to the exponential character
of the bifurcation, cf. [64] for more theoretical arguments. Between these oscillation boundaries, higher harmonics
have a non-negligible effect on the phase sensitivity function Z and must not be discarded. This becomes even more
striking when investigating the phase sensitivity function Z near SNIC bifurcations, Fig. 9.5 (panel b). While higher
harmonics vanish directly on the bifurcation points and thereby allow the phase sensitivity function Z to take the
known (co-)sinusoidal shape 1− cos(θ ), off these bifurcation points but in their immediate vicinity the amplitudes of the
higher harmonics contribute to the shape beyond mere higher-order corrections. Consequently, a careful investigation of
particular parameter regions and the corresponding dynamical regimes as well as their respective bifurcation boundaries
is indispensable for a meaningful phase reduction. Emerging higher harmonics in the phase sensitivity function Z away
from bifurcation boundaries and nonlinear coupling terms will mutually interact and catalyze, thus generate rich and
highly non-trivial network effects.

9.5.2. Near the Hopf point
In order to compare the different phase reduction techniques, we here consider the input parameter in close vicinity of

the Hopf bifurcation point. The resulting Fourier coefficients of the reduced phase interaction function H are summarized
in Table 9.1 for an exemplary small parameter value. For typical parameter choices very near the Hopf bifurcation, all the
four phase reduction techniques properly recover the natural frequencies as well as the dominant first harmonics with
a strong positive sinusoidal component. Both analytic and numerical reduction techniques reveal that the amplitudes of
the second harmonics are smaller by three orders of magnitude than the first harmonics. Therefore, the different phase
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Table 9.1
Phase models derived with different reduction techniques in very close to the Hopf bifurcation (µ = 0.0013). The oscillators’ natural frequency is
ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Symbols +/− denote the sign of each amplitude.
Their quantity corresponds to their influence on the dynamics, with +++ representing dominant contributions of order 1, while 0+/− corresponds
to amplitudes ≤10−3 . Exact numerical values can be found in Appendix B.2.
Approach ω a1 b1 a2 b2
Reductive perturbation 0.701 − − − + + + 0− 0+

Nonlinear transform 0.701 − − − + + + 0− 0+

Direct averaging 0.701 − − − ++ 0 0
Numerical/adjoint 0.701 −− + + + 0− 0+

Table 9.2
Phase models derived with different reduction techniques away from the Hopf bifurcation, µ = 0.1663. The notation is the same as in Table 9.1,
and exact values can be found in Appendix B.2.
Approach ω a1 b1 a2 b2
Reductive perturbation 0.73 − − − + + + −− ++

Nonlinear transform 1.02 −− ++ − +

Direct averaging 1.33 −− ++ 0 0
Numerical/adjoint 0.94 −− −− − −

models are qualitatively identical close to the Hopf bifurcation. The closer we choose the input parameter near the Hopf
point, the more ‘‘accurate’’ becomes the numerical method: the phase interaction function H resembles a pure sine curve,
cf. Fig. 9.3 (panel e). However, the analytic methods, Kuramoto’s reductive perturbation and Poincaré’s nonlinear transform
approach, which build upon a normal form reduction, retain a dominant cosine component. To conclude, the different
phase reduction techniques lead to consistent results close to the Hopf bifurcation boundary in that the resulting phase
models are qualitatively identical36 (although quantitative differences occur, cf. Appendix B.2 for numerical values).

9.5.3. Away from the Hopf point
The qualitative agreement close to the Hopf point no longer holds when the individual oscillatory dynamics are further

away. For larger distances, µ ≫ 0, the different reduction techniques start to diverge from each other and quantitative
differences have a qualitative impact as shown in Table 9.2. Remarkably, only the numerical/adjoint method captures the
change of slope of the phase interaction function H , whose derivative atψ = 0 is dominated by b1 as has been illustrated in
Fig. 9.3. Poincaré’s reduction via nonlinear transforms does not yield the correct sign of b1, but the amplitudes of the first and
second harmonics, at least in terms of orders of magnitude, coincide with the numerical/adjoint method. While Kuramoto’s
reductive perturbation overestimates the second harmonics, by construction Haken’s averaging does not contain any higher
harmonics; we refer to Appendix B.2 for exact numerical values. Strong first harmonics of the phase interaction function H
amplify the coupling and thus result in faster (de-)synchronization, depending on the sign of the sinusoidal component.
Second and higher harmonics may play a crucial role for clustering. An over- or underestimation of the amplitudes of
higher harmonics may hence lead to erroneous multiple- or one-cluster effects, respectively.

9.6. Numerical methods

The farther one moves away from particular bifurcation boundaries, the more the reduced phase models may diverge.
Naturally, one seeks a phase reduction technique that reliably recovers the (collective) behavior of the original (network)
dynamics. Recall that the accuracy of analytic phase reduction techniques scales with the distance to the bifurcation
point due to the normal form reduction inherent to these two-step reduction approaches. By contrast, numerical phase
reduction techniques may not suffer this shortcoming and retain the accuracy across parameter space. For this reason,
numerical phase reduction appears a promising candidate to capture the dynamics of the underlying high-dimensional
oscillator networks. In the following, we will demonstrate that this is indeed the case.

Following the literature on the agreement between network dynamics and their reduced phase dynamics, we use a
network of identical Wilson–Cowan neural masses with parameters given by Hoppensteadt and Izhikevich [46] or by
Hlinka and Coombes [168]; see Appendix B.2 for the values. Moreover, we set ΘE + Pk ↦→ Pk and ΘI ↦→ Qk and consider
the inputs Pk and Qk to the excitatory and inhibitory parts of neural mass k as bifurcation parameters. As illustrated in
Fig. 9.6, the colored regions represent parameter values (Pk,Qk) at which the Wilson–Cowan model exhibits self-sustained
stable limit-cycle oscillations. This region falls into the analytically determined Hopf bifurcation boundaries, see, e.g., [46],

36 The Hopf normal forms obtained with the normal form reductions may be further transformed into the topological Hopf normal form, leading
to a purely sinusoidal phase interaction function H . The corresponding transformation, however, requires a rescaling of time, after which a direct
comparison with the other reduction methods appears more difficult. For this reason, we stick to the Poincaré Hopf normal form along the analytic
phase reduction techniques throughout this report. We refer to [Theorem 3.4, 82] for more details on the transformation into the topological Hopf
normal form w′

= (α̃ + i)w + l1(α̃)|w|
2w + O4(|w|) with w ∈ C and l1(α̃) ∈ R denotes the first Lyapunov coefficient.
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Fig. 9.6. Oscillatory regime of the Wilson–Cowan neural mass model using the same parameters as in [168]. The color coding indicates the derivative
of the phase interaction function H at ψ = 0 determining the stability of the fully synchronized solution: if H ′(0) > 0 the fully synchronized solution
is stable, and unstable otherwise. In view of the results in Section 9.5, we used the numerical/adjoint reduction method to generate this figure.

for a more detailed bifurcation analysis. Hlinka and Coombes investigated this Wilson–Cowan network model with respect
to its functional connectivity. They showed that the predictions based on the derivative of the numerically reduced phase
interaction function H agreed almost perfectly with the synchronization properties of the original network, cf. their Figures
6 and 7. However, they reported small parameter regions, see, e.g., the inset in Fig. 9.6, in which their predictions did
not match the actual dynamics [168]. We confirm their analysis and extend their findings in one of these parameter
regions by exploiting the reduced phase model in more detail. As we will show, our extended insights using numerical
phase reduction allow for predicting the collective behavior beyond the incoherence–synchronization transition and even
cluster states can be detected reliably.37

To show that higher harmonics of the phase interaction function H capture collective behavior when the fully
synchronized solution is no longer stable, we zoomed in into the corresponding parameter region; see the inset in Fig. 9.6.
The Hopf bifurcation occurs at the lower boundary between oscillatory (colored) and stationary behavior (white region).
Positive values of H ′(0) predict synchronized oscillations, irrespective of the other (even) Fourier components. Moving
upwards in parameter space by increasing the parameter Qk, leads to a change of signs, H ′(0) becomes negative and the
fully synchronized state is no longer stable.

Considering only first and second harmonics in the phase model with positive coupling strength, the possible network
states can be divided into three dynamical regimes: (i) the fully synchronized solution (one-cluster state) is stable if b1 > 0
and b1 ≫ |b2|, (ii) the incoherent solution (anti-cluster state) is stable if b1 < 0 and b2 < 0 with |b1| ≫ |b2|, and (iii) the
(balanced) two-cluster state is stable if b1 < 0 and b2 > 0; see Section 5.3.3 and [177]. Analyzing the numerically reduced
phase interaction function H with respect to higher harmonics, we find that all of the three possible states above can be
realized. When fixing the parameter Pk = −3, we find at Qk = −9.3 that b1 > 0 (stable one-cluster state), at Qk = −8.9
that b1 < 0 and b2 < 0 (stable anti-cluster state), and at Qk = −8.7 that b1 < 0 and b2 > 0 (stable two-cluster state);
for the exact numerical values we refer to Appendix B.2. To test these predictions for the different parameter values, we
used the direct method and simulated a network of N = 30 Wilson–Cowan neural masses with global coupling strength
κ = 0.15. The simulations displayed the predicted fully synchronized solution, an anti-cluster state, i.e. incoherence, and
a stable two-cluster state, respectively; see Fig. 9.7. Interestingly, the other phase reduction techniques did not only fail to
predict the existence of two-cluster states, but they also missed the change of stability of the fully synchronized solution;
cf. Table 9.2.

9.7. Remarks

Phase reduction is a powerful tool to analyze the collective behavior of bio-physiologically realistic network models
such as coupled Wilson–Cowan neural masses. Reduced phase models can properly predict the transition from incoher-
ence to synchronization of oscillatory networks, and even complex collective behavior such as two-cluster states can

37 As mentioned above and according to the reduced phase model, the network will synchronize close to the Hopf bifurcation boundaries as
anticipated from the topological Hopf normal form. In general, global synchronization of coupled (identical) oscillators can be expected if the slope
of the phase interaction function H at the origin is positive, that is, if H ′(0) > 0. Hlinka and Coombes [168] also assessed the synchronization
properties of the original Wilson–Cowan model in terms of mean phase coherence and correlation and found a good agreement with the predictions
based on H ′(0), see Fig. 9.6.
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Fig. 9.7. Non-trivial network dynamics of N = 30 coupled Wilson–Cowan neural masses. The different network states (a) global synchronization, (b)
incoherence, and (c) a balanced two-cluster state were predicted by the reduced phase model using the numerical/adjoint method. Shown are final
(Tend = 1000 s) conditions (’o’) on the uncoupled limit cycle (left column) and the extracted phases (right) for the last 15 seconds. We fixed the
coupling strength at κ = 0.15 and the simulations started from uniformly distributed initial conditions along the uncoupled limit cycle. Parameter
values of (Pk,Qk) are (a) (−3,−9.3), (b) (−3,−8.9) and (c) (−3,−8.7).

be inferred. However, phase reduction is highly parameter-sensitive and a careful analysis with respect to underlying
dynamical regimes and bifurcation boundaries ought to precede the derivation of a phase model.

Close to bifurcation boundaries of the supercritical Hopf bifurcation, all the different phase reduction techniques yield
consistent results. There are, however, striking differences between the reduced phase models already at reasonably
small distances µ ≪ 1 from the Hopf bifurcation point. One may wonder which reduced phase models indeed
describe the phase dynamics of oscillator networks and capture the actual collective behavior. Analytic phase reduction
techniques have shortcomings unless parameters are considered in direct vicinity of the Hopf bifurcation. Possible
inaccuracies can be traced back to the inherent normal form reduction in these two-step phase reduction methods.
Moreover, analytic reduction techniques may lead to different results although all normal form reductions have the same
background, cf. Section 4.1. While Poincaré’s reduction via nonlinear transforms accounts for the full dependence on the
bifurcation parameter µ, Kuramoto’s reductive perturbation neglects this accuracy by approximating nonlinear terms with
the corresponding expressions evaluated at µ = 0 in the subsequent reduction steps, leading to possibly different results.
Numerical reduction techniques, by contrast, bear the potential to accurately describe the respective phase dynamics, and
predictions about the actual network dynamics can readily be drawn from the reduced phase model. We highlighted the
potential of phase reduction with extensive simulations of the Wilson–Cowan network.

10. Discussion

The reduction of a network of interacting oscillatory systems into a network of coupled phase oscillators facilitates
the analysis of the collective, macroscopic network dynamics. Complex oscillatory networks typically stand out for high-
dimensional, nonlinear dynamics on both the network and the nodal level. As explained, by looking at the phase dynamics
one drastically reduces this dimensionality while keeping the option to infer (the stability of) network states and to predict
collective behavior. Usefulness and strength of a model (here, the reduced phase model) may be judged by its predictive
power. Quantifying this can be a challenge. Models are built on assumptions, which restrict their applicability and range
of use. Beyond this range, however, a model can lose its validity and the actual dynamics can significantly diverge from
model predictions.

All the listed phase reduction techniques to derive a phase model dwell on assumptions. First, they require a certain
degree of homogeneity among the dynamics of the network’s nodes. Moreover, we assumed a static pairwise coupling
structure and thereby ignored that the form, structure and dynamics of the coupling between nodes may also, and
decisively, influence the collective behavior. Then, we considered phase reductions only for deterministic, autonomous
systems without delay. In principle, reduction techniques can be generalized to cope with delay, noise and time-varying
input, at least to some extent. Last but not least, most, if not all, of the phase reduction techniques rely on the theory
of weakly coupled oscillators [46]: Every node of the original network has to exhibit stable limit cycle oscillations in the
absence of coupling to other nodes, and the coupling strength has to be sufficiently weak so that amplitude effects can
largely be neglected. That is, the dynamics of each node remains close to the respective unperturbed limit cycle solution
while (and despite of) interacting with other nodes. More recently, several phase reduction techniques have been refined
and extended so that the assumptions inherent to the theory of weakly coupled oscillators might be loosened, at least to
certain degree.
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10.1. Beyond nearly identical oscillators

We assumed that the coupled nonlinear oscillators are (nearly) identical. By this, differences in the individual,
uncoupled dynamics ẋk = f k(xk) could be subsumed under the coupling terms so that the function f k = f coincided
for all oscillators, k = 1, . . . ,N . This simplification enabled us to predict the collective behavior solely by evaluating
the phase interaction function H . Admittedly, the assumption of identical nodes is often inaccurate. This is particularly
true when modeling realistic networks of biophysiological, chemical, or neuronal oscillators. Understanding, however, the
potential as well as limitations of phase reductions for networks of identical oscillators, is essential for tackling an even
more complex setup of physically meaningful heterogeneous networks.

The theory on phase reductions generally holds for heterogeneous oscillators as long as their frequencies are
either ϵ-close or pairwise commensurable [46,167]. Yet, practical application becomes more cumbersome because the
phase dynamics have to be retrieved for each oscillator individually. There are approaches to assess (the stability of)
synchronized network or cluster states of heterogeneous oscillators, e.g., along an extended master stability function
formalism for nearly identical systems [218–220]. There, the degree of heterogeneity has to be small so that predictions
about the collective behavior are possible. When heterogeneity of a network only affects the natural frequencies and leaves
the phase interaction functions identical, the resulting phase oscillator network can be treated in terms of heterogeneous
Kuramoto-like oscillators. A major advantage of this kind of coupled phase oscillator models is that they typically give rise
to only a few macroscopic variables, which in addition often allow for an intuitive interpretation [221], as does, e.g., the
Kuramoto order parameter. The Watanabe–Strogatz [222] and Ott–Antonsen theories [170,223] are paramount examples
how macroscopic variables may serve to describe the network behavior [224], see also [225] for a recent review.

10.2. Beyond pairwise coupling

The coupling dynamics of interacting nonlinear oscillators is a research theme in itself, and we do not dare to even
intend to treat this subject thoroughly. Already the interaction between two units, let alone multivariate coupling schemes,
can take too many forms, is too diverse and may feature too distinct dynamics, so that most of the times realistic coupling
scenarios are approximated by simpler terms to render a network analysis feasible. In our case, we have heavily dwelled
on a static pairwise coupling structure. This facilitates the derivation of the phase model insofar as it is sufficient to
consider the phase dynamics of only two coupled oscillators.

10.2.1. Coupling functions
When confronted with interacting systems, it is important to identify the type of coupling between them, especially

given the role of coupling dynamics in shaping non-trivial network behavior. As we briefly noted in our Brusselator
example, Section 8, for systems with dynamics ẋ = f (x)+g(x, y) the character of the coupling can be direct, g(x, y) = g(y),
diffusive, g(x, y) = g(y − x), reactive, g(x, y) = (ϵ + iβ)g(x − y), conjugate, g(x, y) = g(x − Py), as a chemical synapse,
g(x, y) = g(x)S(y) with S(·) of sigmoidal shape, or environmental, g(x, y) = ϵ

∫ t
0 e−κ(t−s)(x(s) + y(s))ds; see the recent

review [226] and the references therein. One may further distinguish between linear and nonlinear coupling, depending
on the order of g(x, y). While the original dynamics of interacting systems exhibit one or more coupling functions of the
types above, their counterpart in the corresponding and reduced phase model often boils down to either a diffusive phase
coupling term g̃(θx, θy) = g̃(θx − θy) or to a pulse–response coupling of the form g̃(θx, θy) = P(θy)R(θx). These two phase
coupling functions can be ascribed to physically distinct mechanisms. The first one is also referred to as electrotonic
or gap junction coupling, which is based on voltage differences between cells in electrical contact. The latter relates
to impulse coupling, or in a rather neuroscientific context, to spike-triggered synaptic transmission via the release of
neurotransmitters across a synaptic cleft. How coupling terms of the original dynamics translate into the particular phase
coupling functions, depends both on the characteristics of the underlying dynamical system as well as on the strength
of interaction. The pulse–response coupling, as established by Winfree in his original work [73], appears to be the more
general form of phase interactions where the coupling term is the product of the external perturbation P(θy) through the
other oscillator with the response R(θx) of the perturbed oscillator, the latter commonly referred to as the phase response
function. Averaging procedures, however, can be applied if the perturbations and/or coupling strength are sufficiently
weak, in which case a diffusive phase coupling term can be recovered again. There are other exceptions where an averaging
procedure is possible when, e.g., multiple strong pulses are dispersed around the cycle, cf. [55].

10.2.2. Dynamic coupling
We are fully aware that models of interconnected nonlinear oscillators often feature rather complex coupling terms

with individual dynamics. This is particularly true for neural oscillators [54,57,227]. Keyword here is event driven coupling.
For instance, let two neurons be connected via a chemical synapse. When the presynaptic neuron elicits a spike, an action
potential travels along the axon and provokes the release of neurotransmitters at the synapse. This in turn leads to a
temporary change of the membrane potential of the postsynaptic neuron with characteristic finite rise and fall times.
Taken together, event driven coupling can be defined as the time-resolved interaction between nodes (e.g., neurons) that
is triggered through a particular event (e.g., the spiking of the presynaptic neuron). This transient dynamical process
can be described mathematically with a linear differential operator that has a given response (or Green’s function).
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When allowing for this kind of complex coupling, the corresponding network model becomes more detailed and high-
dimensional. Still, the theory outlined in Sections 3, 4, 6 and 7 also applies in this case and a proper phase model may
be reduced. The coupling functions in the reduced phase model, however, are now time-dependent and may become
arbitrarily difficult. Sometimes, these reduced coupling functions can be approximated and continue to provide an accurate
model of the underlying system, see, e.g., [228]. We discourage, however, from ad hoc approximations without a sensitive
assessment of both the full dynamics and the reduced, or simplified, phase dynamics. In Section 9, we first analyzed the
parameter range in which the nonlinear, sigmoidal coupling function in the Wilson–Cowan neural mass model can be
adequately approximated by polynomial terms, and we employed the analytic reduction techniques for these parameters.

10.3. Beyond deterministic, autonomous and non-delayed dynamics

We ignored that the self-sustained limit cycle dynamics may also be subject to noisy and time-dependent perturba-
tions, or to time-delayed coupling with other oscillators. How will such inputs affect the oscillators dynamics, their phase
description and eventually the network behavior?

10.3.1. Stochastic and time-varying systems
Exemplarily, we reconsider the Wilson–Cowan neural mass model (9.2) with population-specific input Pk that combines

both a stochastic term and a deterministic time-varying term,

Pk = ξk(t) + P0
[
1 + Ak sin(ωp,kt + φ0,k)

]
. (10.1)

The deterministic term oscillates sinusoidally with amplitude Ak, frequency ωp,k and phase shift φ0,k. ξk(t) is an arbitrary
noise term. When restricting it to white Gaussian noise, the noise characteristics are given by ⟨ξk(t)⟩ = 0 and ⟨ξk(t)ξl(s)⟩ =

2D2δklδ(t − s), where ⟨·⟩ denotes averaging over the realizations of ξk, and D ≥ 0 scales the noise intensity. Both noise
and time-variability can lead to more complex dynamics and may complicate the phase reduction to great extent.

Periodic forcing without noise, i.e. Ak > 0 and D = 0, may already lead to quasi-periodic oscillations of the single neural
masses. Quasi-periodic oscillations can also be caused by the time-delay structure, see Section 10.3.2, or by unidirectional
coupling [229]. Phase reduction techniques for weakly connected quasi-periodic Wilson–Cowan oscillators have been
proposed by Izhikevich [230], and further extended by Demirt and co-workers [231]. The application to networks of
weakly coupled Wilson–Cowan neural masses where time-periodic input is inducing quasi-periodic oscillations at the
single node level, however, is still missing and requires further investigation. Likewise, non-autonomous input functions
may generate chaotic oscillations. While a phase can be defined for chaotic oscillators [232], to the best of our knowledge,
no phase reduction approach has been attempted for weakly coupled chaotic oscillators.

Recently, several studies have extended the deterministic Wilson–Cowan model by a noisy component [233–238]. The
origin of an additional noise term can be motivated in various ways: intrinsic fluctuations in neural activity, microscopic
randomness in neural connectivity, or stochastic perturbations due to finite-size effects; see [239,240] and the references
therein. There is still an ongoing discussion about stochastic descriptions of meso-scale neural populations, see, e.g., the
recently proposed model by Schwalger and co-workers [241]. We here aim at revising briefly how one can rigorously
describe a network model of stochastic Wilson–Cowan neural masses in terms of their phase dynamics. We consider
noisy external input Pk(t) = P0,k + εξk(t) to the external part of the kth Wilson–Cowan population and omit further
state-dependencies, i.e. the dynamics of interest read

Ėk = −Ek + S

[
aE

(
cEEEk − cIE Ik −ΘE + P0,k +

κ

N

N∑
l=1

CklEl

)
+ εξk(t)

]
(10.2a)

İk = −Ik + S [aI (cEIEk − cII Ik −ΘI)] . (10.2b)

We assume that the noise is weak, i.e. ε ≪ 1 is sufficiently small, and, as before, we consider the parameter regime
exhibiting self-sustained oscillations when κ = 0 = ε. Limit cycle oscillations will be perturbed both by noise and by the
other weakly coupled Wilson–Cowan populations in the same manner. The effects of noisy perturbations crucially depend
on the phase sensitivity function Z of the Wilson–Cowan neural mass, and a reduced dynamics is favorable. Therefore, it
appears legitimate to linearize around the noise term such that we arrive at the dynamics (10.2)a) of the excitatory part
now given by

Ėk = −Ek + S

[
aE

(
cEEEk − cIE Ik −ΘE + P0,k +

κ

N

N∑
l=1

CklEl(t)

)]
+ εσkξk(t) + O(κε, ε2) ,

σk = σk(Ek, Ik) = S
[
aE
(
cEEEk − cIE Ik −ΘE + P0,k

)]
+ O(κ) .

(10.3)

Note that the multiplicative character of the noise becomes evident as ξk(t) appears in the sigmoidal transfer function
S
[
·
]
in (10.2). Again, the aim is to deduce the phase dynamics of the network of coupled Wilson–Cowan neural masses

with noisy input. Noise may lead to strongly irregular oscillations, such that an extended phase description for stochastic



B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105 61

oscillators is needed as has been suggested alternatively by Schwabedal and Pikovsky [242] and Thomas and Lindner [243].
In the case of weak noise, these strong irregularities may not arise, and we can rely on phase reduction methods for
stochastic limit-cycle oscillators with both additive and multiplicative noise [244–247]. The main focus in these references
lies on the synchronization of a network by common (white and colored) noise, but not necessarily on a phase description
where both coupling and noise terms affect the oscillators’ phase dynamics. Nonetheless, the work provides important
insight into the subtleties of phase reduction that arise due to (distinct) characteristic time scales of both the noise and
the deterministic dynamics [164].

Let τξ and τρ denote the characteristic correlation time of the noise and the relaxation time of the amplitude ρ of the
limit cycle, respectively. For simplicity, we assume τρ to be independent of the phase θ . When the dynamics converges
towards the limit cycle solution instantaneously, we can assume the ‘‘phase limit’’ τρ → 0 as before. In the case of white
noise, one can also consider the limit τξ → 0. In general, however, both τξ and τρ are finite. If we ignore the coupling for
a moment, then the general form of the phase dynamics associated to (10.2) reads [246]

θ̇k =

[
ωk +

ε2

1 + (τξ/τρ)
Y (θk)

]
+ εZ(θk)ξk(t) (10.4)

in the Stratonovich interpretation [248]. In (10.4) the natural frequency ωk of the oscillator may vary even when driven
by white noise. Although this variation is of order O(ε2), it is of the same intensity as effects due to additional forcing,
or coupling, and might therefore not be neglected [164]. In order to derive the actual expressions of Z(θk) = Zk(θk) and
Y (θk) = Yk(θk), it is important to define phase and amplitude coordinates θk, ρk in a vicinity of the (unperturbed) limit
cycle solution

(
Ec
k (t), I

c
k (t)

)
=
(
Ec
k (θk), I

c
k (θk)

)
. We find

Zk(θk) = Zk ·

(
σk(Ek, Ik)

0

)⏐⏐
(Ek,Ik)=(Eck ,I

c
k )
,

where Zk is the phase sensitivity function of the (deterministic and uncoupled) neural mass k. The expression Yk(θk) is
more complicated and crucially depends on the amplitude dynamics ρk evaluated on the limit cycle. For the general forms
of Zk(θk) and Yk(θk), we refer to [245,246]. Note, however, that in the limit of weak coupling, 0 < κ ≪ 1, we arrive at

θ̇k = ωk +
ε2

1 + (τξ/τρ)
Yk(θk) +

κ

N

N∑
j=1

Hkj(θj − θk) + εZk(θk)ξk(t) (10.5)

with Hkj the usual phase interaction function introduced earlier; for the underlying theory see [12,146,147,208,249,250].
For the practical application of an analytic reduction it is again advantageous to first cast the dynamics (10.2) into Hopf
normal form, determine the phase sensitivity function Z and the relaxation time τρ of the amplitude dynamics, and
subsequently apply a phase reduction resulting into (10.5).38

The phase reduction of the stochastic Wilson–Cowan neural mass network is based on strong assumptions on the
weakness of perturbations through coupling and noise. The recent extensions to strongly perturbed limit cycle oscilla-
tors [251] dwell on the separation of a slow but large-amplitude component and weak fluctuations of the perturbation.
Therefore, they seem rather adequate to model weakly coupled oscillators with changing background activity [252].
Although not explicitly mentioned, the incorporation of noise appears to be straightforward. External input functions, both
deterministic and stochastic, may lead to complex collective behavior, such as the onset of collective oscillations [150] or
stochastic, i.e. noise-induced, synchronization [244,247]. However, a comprehensive theory for the reduction of stochastic
and nonautonomous systems in terms of phase (and amplitude) dynamics is still being sought for and remains in the focus
of current research.

10.3.2. Systems with delay
Complex networks often stand out for a realistic network structure, or topology. An important feature of complex

network topology, which we largely ignored in the presentation of phase reduction techniques, is the incorporation of a
transmission rate, that is, the time needed for the signal of node k to travel to and perturb or affect node j. Up to now, we
only considered infinitely fast, or instantaneous, interactions between oscillators. In general, however, one ought to take
also the (transient) dynamics of signal propagation into account, which can mainly, and sufficiently well, be approximated
by an additional delay structure.

Incorporating delays between cortical regions or spatial kernels leads to far more intricate coupling dynamics, see,
e.g., [253], and the following subsection. Friston popularized Volterra series to model inherent nonlinear interactions
when also taking neuronal transients into account, i.e. the recent history of neural activity of connected neuronal
populations [254]. Phase reduction strategies have been extended recently to cope with time-varying external perturba-
tions [251,252,255], which hints at ways how to tackle dynamically more intricate coupling terms. However, a thorough

38 When the amplitude dynamics towards the limit cycle is much faster than the correlation time τξ of the noise, or when the limit cycle is
sufficiently robust against amplitude perturbations, then the ratio τξ /τρ can be assumed to tend to infinity and the term with Yk(θ ) will vanish. In
this case, the phase reduction to θ̇k = ωk + εZk(θk)ξk(t) is of the same (non-stochastic) nature as the ‘standard’ phase reduction method considered
above [246].
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analysis of complex coupling functions and their translation into phase models is beyond the scope of this review. Yet,
we trust that our results can help to construct particular phase coupling terms, which especially becomes important for
the modeling of (neural) cross-frequency interactions [256,257].

We briefly revisit the phase reduction theory for delay-coupled systems. As in the previous subsection, we exemplarily
focus on the Wilson–Cowan mass model. Delays may occur both within a single neural mass and between distinct neural
masses. Usually, the (internal) interactions are assumed to be considerably fast compared to the typical transmission speed
across cortical regions. Therefore, delays within each neural mass can be neglected so that only delays in the coupling
between different neural masses generate a global (cortical) delay structure. Such delay structure can be neurobiologically
motivated when, e.g., inferred from diffusion spectrum imaging. Once axonal pathways have been identified, the Euclidean
distances between connected brain regions and physiologically realistic conduction velocities provide an estimate on the
delays τkl between nodes k, l. The network dynamics with time-delay read

Ėk = −Ek + S

[
aE

(
cEEEk − cIE Ik −ΘE + Pk +

κ

N

N∑
l=1

CklEl(t − τkl)

)]
(10.6a)

İk = −Ik + S [aI (cEIEk − cII Ik −ΘI)] . (10.6b)

Assuming the time delays τkl to be of the same order of magnitude as the period Tk of oscillation of each of the neural
masses, they will manifest as model-dependent phase shifts ∆kl = (2π/Tk)τkl in the coupling function of the reduced
phase dynamics:

θ̇k = ωk + κ

N∑
l=1

H(θl − θk −∆kl) ; (10.7)

for the derivation see, e.g., [33,35,39,212]. Intuitively, this phase shift can be explained within the theory of weakly
coupled oscillators: Given that κ ≪ 1 is small, the time-delayed coupling term corresponds to a phase-shifted point
on the (uncoupled) limit cycle. When expanding the phase interaction function H in Fourier space, the phase shifts ∆kl
will effectively shape the amplitudes of the odd and even harmonics, i.e. of the sine and cosine components, respectively,
which may affect the collective dynamics of the network. In fact, prior studies that respected transmission delays in phase
oscillator networks have reported elaborate synchronization dynamics [258–262].

When a phase shift-approximation as above is no longer adequate and τ represents the time of propagation of
the signal from one neuron to another, the dynamics of the corresponding delay-differential equations become more
complex. Indeed, delayed dynamical systems are infinite-dimensional, and thus present a serious mathematical challenge.
Numerical tools have been developed such as DDE-BiFTOOL [263,264], which can be used to investigate the dynamical
properties of coupled systems with delay. Coombes and Laing [265] applied the methods to a single Wilson–Cowan
population with multiple time delays. Time delays influence the creation of oscillations as well as the form of the limit-
cycle. Even quasi-periodic orbits can emerge, as has been shown for a slightly different version of a Wilson–Cowan
population with delays [266]. How coupling, with and without delays, to other Wilson–Cowan populations further shapes
the oscillatory properties of the single neural masses has not been answered, yet.

The incorporation of time delays may lead to oscillations around an otherwise stable fixed point solution. Phase
reduction techniques have been extended to tackle these delay-induced oscillations [164,267,268]. The theoretical
framework developed there has yet to be generalized to analyze weakly coupled delay-induced limit-cycle oscillators. It
remains open whether reduction techniques can be applied to deduce a phase model when oscillations are not necessarily
delay-induced but strongly affected by the delay: if delays lead to very strong amplitude effects, a ‘standard’ phase
reduction goes along with the loss of (too much) information so that alternative ways have to be found.

10.4. Beyond weak coupling

The reduction of phase dynamics from a network of coupled oscillators retains its mathematical justification as long
as the theory of weakly coupled oscillators can be evoked. However, no rigorous definition of weak coupling exists, nor
a concrete limit of the coupling strength at which the character of interaction switches from weak to strong. Usually,
phase reduction is achieved with the tacit understanding that each isolated system already displays stable limit cycle
oscillations, which is a necessary condition for the theory of weakly coupled oscillators. In some cases, however, it is the
coupling between systems that induces oscillations. Smale was among the first to investigate the emergence of oscillations
via a Hopf bifurcation due to diffusive coupling [269]. On the other hand, coupling between systems can also make
oscillations cease. Revoking the example of coupled Wilson–Cowan neural masses, Ermentrout and Kopell reported this
kind of oscillation death for a chain of oscillatory nodes [54], and Daffertshofer and van Wijk found similar behavior in a
heterogeneous network [33].

Coupling-induced effects only occur for reasonably large coupling strengths. Then, an identification of the phase
dynamics as within the theory of weak coupling may no longer be possible. While sufficiently weak coupling ensures that
the shape and the frequency of the limit-cycle orbits remain almost unchanged, strong coupling leads to non-negligible
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amplitude effects. These can destabilize synchronized states, cause (amplitude and thus) oscillation death or collective
chaos, and a phase reduction has only been proposed for quite restrictive assumptions; see [251] and the references
therein. The theory of weakly coupled oscillators additionally requires that the actual trajectories of the oscillators are
always close to the isolated limit-cycle solution and typically instantaneous relaxation back to the limit cycle after a
perturbation is assumed. By this one can rely on the linear dynamics around limit cycles, yielding a straightforward yet
comprehensive (isochronal) description as outlined in Section 2. However, non-linear effects may occur when moving
away from the direct proximity to the limit cycle, rendering a phase reduction spurious.

There are at least two possible approaches to improve phase reductions for oscillatory dynamics with ‘stronger’
perturbations. A first one is to consider higher order approximations to the isochronal dynamics in order to construct so-
called higher order phase sensitivity functions, see, e.g., [270,271]. However, there are also potential pitfalls when applying
such a phase reduction. The presence of nearby invariant structures (e.g., saddle points or invariant manifolds) or strong
forcing moving the oscillator out of the limit cycle’s basin of attraction B(C) are but a few possible obstacles. The second
one is to use phase–amplitude descriptions of the oscillatory dynamics. By appropriate coordinate transformations, these
phase–amplitude descriptions can be either non-isochronal, in which case the reduced phase and amplitude dynamics
may also hold outside of the basin of attraction B(C), or isochronal, when the reduced dynamics is only valid within B(C).
Given the potential of these kinds of extended phase reduction, we will revise various techniques in Section 11.

10.5. Uniqueness of normal forms

A final point of discussion concerns normal forms, which are an important ingredient for analytic phase reduction
techniques. Given the plethora of derivation schemes as mentioned in Section 4.1, it appears obvious to ask whether
they all result into the same, unique normal form. Needless to say, uniqueness of normal forms can, in general, not be
guaranteed, at least not for ‘classic’ normal forms, which we have used throughout this report. Classic normal forms
are usually simple enough to become solvable and can be truncated at a given degree. This leaves the question of
asymptotic validity. That is, is a normal form in terms of a (formal) series, or a truncated normal form, a reasonably good
approximation of the original dynamics? In fact, quite detailed error analyses can be found in the literature [77,272,273].
Murdock presents several error estimates in [Chapter 5, 77], among which there is a basic theorem that allows to estimate
an asymptotic error (depending on the order of truncation and on the initial distance) if (a) the matrix of the linear term
is semi-simple and has all its eigenvalues on the imaginary axis, and (b) if the semi-simple normal form style is used,
see [Lemma 5.3.6,77]. A normal form style is connected with the choice of a complementary subspace Hk of the image of a
homological operator applied to a particular vector space Pk, as shown in Section 4.1. The operator is associated with the
Jacobian, that is, with the linear term of the dynamics. In the case that the Jacobian is semi-simple39, e.g., in the case of a
Hopf bifurcation, there is only one useful choice of Hk as the kernel of the operator applied to Pk, which is the semi-simple
normal form style40. Fixing a normal form style, however, does not necessarily determine a unique normal form [77]. The
main reason is that all higher order terms in the normal form are normalized with respect to the linear term only, i.e. the
normal form satisfies a condition which is defined through the Jacobian. A more complete normalization, by contrast,
builds on a series of normalizations: first the quadratic term is normalized with respect to the linear one, then the cubic
term is normalized with respect to the sum of the linear and quadratic terms, etc. The resulting higher-level normal forms
require more advanced calculations, see, e.g., [85,276]. The actual ideas of these fully normalized normal forms go back to
Belitskii [277] and the work by Baider and co-workers [278,279]. One can find alternative notions for higher-level normal
forms in the literature like hypernormal forms, simplest normal forms, or unique normal forms. Higher-level normal forms
can differ for distinct normal form styles applied, but uniqueness may be established within a fixed normal form style.

11. Outlook

There exists a variety of extended phase and phase–amplitude reduction techniques. A thorough review of all of them
would certainly amount to a second volume of this report. Still, we want to briefly gather and revise those techniques
that can be readily used to derive an improved description of the phase dynamics of a single oscillator. Our aim is to
provide an overview over different approaches and to aid create a unifying language of and perspective on the topic. This
will, as we believe, be very beneficial for extending phase–amplitude reductions to networks, so that the derivation of
the phase dynamics of complex oscillatory networks can be standardized and improved further.

Given oscillatory dynamics with a periodic orbit, an appropriate coordinate transformation into a phase–amplitude
model can allow for a convenient definition of a phase variable along the limit cycle and of amplitude variables that
can be associated with the distance from the limit cycle. Such coordinate transformations preserve the dimensionality
of the system under study. If, for instance, some amplitude variables turn out to be negligible and can be discarded,
the derivation of the (truncated) phase–amplitude model indeed becomes a phase–amplitude reduction. Alternatively,
the description of the phase dynamics can be improved through an augmented phase reduction. It is closely related to

39 An n × n matrix A is called semi-simple if it is diagonizable with diagonal entries λ1, . . . , λn ∈ C, otherwise A is non-semi-simple.
40 For non-semi-simple Jacobians, the mainly used styles are the adjoint operator or inner product normal form popularized by Elphick and
co-workers [274], and the sl(2,R) normal form due to Cushman and Sanders [275].
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phase–amplitude reductions, but instead of capitalizing on non-isochronal phase and amplitude coordinates, augmented
phase reduction builds on the concept of isochrons and isostables for a periodic orbit. Similar to the notion of isochrons
as level sets of the same asymptotic phase value, isostables are defined as a set of initial conditions that have the same
relaxation rate towards the attracting limit cycle [280]. An isostable represents an amplitude degree of freedom, which
in addition is independent of the phase and of other amplitude degrees of freedom. Both isochrons and isostables can be
understood from a unified perspective via the spectral properties of the Koopman operator [280–282].

In the following, we first introduce two approaches to phase–amplitude reduction. Then, we turn to the augmented
phase reduction and also revise an approach how to increase the accuracy of phase–amplitude reductions beyond a leading
order approximation of the phase and isostable dynamics, which is called a second-order phase reduction. Last, we sketch
three methods that exploit the full global properties of isochrons and isostables, giving rise to another class of extended
phase reduction techniques along global isochrons and isostables.

11.1. Phase–amplitude reductions

Here, we present two phase–amplitude reduction techniques that are based on coordinate transformations of the
oscillatory dynamics. The new coordinate system is such that one coordinate, corresponding to the axis that points in
the direction of the tangent vector along the periodic orbit, indicates the phase, whereas the other coordinates denote
transversal variables, giving the notion of distance from the limit cycle. The first method was established by Ermentrout
and Kopell [53–55] and became popular as it resembles a phase reduction in the limit of ‘‘infinite attraction’’. The second
one upholds the full phase–amplitude description through the setting of a moving orthonormal system. The underlying
theory was detailed by Hale [283], see also [167,284], and has been put forward as a phase–amplitude description by
Wegdwood and co-workers in [285]. It generalizes Ermentrout & Kopell’s reduction approach in that it respects the
amplitude dynamics beyond leading order. The resulting interaction functions in the phase(-amplitude) model thus
comprise both phase and amplitude effects from the other oscillators.

11.1.1. Ermentrout & Kopell’s reduction
The reduction method by Ermentrout and Kopell [53–55] is based upon a coordinate transformation xk = Tk(θk, ρk)

of the oscillatory dynamics in terms of phase and amplitude variables. For a network of coupled oscillators, it is possible
to apply the transformation Tk to every node, leading to network dynamics whose evolution is governed by differential
equations for the interacting phases and amplitudes of the respective nodes. In the limit of ‘‘infinite attraction’’, that is, if
the amplitude variables tend to vanish infinitely fast, the phase–amplitude description reduces to a phase model of the
oscillator network. We briefly sketch the coordinate transformation Tk for a single oscillator, and subsequently extend the
phase–amplitude description first to two, and then to multiple coupled oscillators.

Single oscillator. We consider an oscillator ẋk = f k(xk), xk ∈ Rn, with an asymptotically stable limit cycle solution xck(t)
with period Tk and frequency ωk = 2π/Tk. The coordinate transformation Tk is such that it maps xk to variables θk ∈ S1

and ρk ∈ Rn−1. The phase θk parametrizes xck along the limit cycle C and the amplitudes ρk are normal coordinates in a
neighborhood of C, with ρk = 0 directly on it. Ermentrout and Kopell [55] chose the transform Tk of the form

xk(t) = Tk
(
θk(t), ρk(t)

)
= xck (θk(t))+ Mk

(
θk(t)

)
ρk(t) + O2(ρk) , (11.1)

where Mk(θ ) is an n × (n − 1)-matrix and normalized such that it fulfills

Mk(θ )⊺Mk(θ ) = I (n−1)×(n−1)[
∂θxck(θ )

]⊺Mk(θ ) = 01×(n−1) .
(11.2)

Here, ∂θ = d/dθ denotes the derivative with respect to θ . For small |ρk| ≪ 1, one can express the dynamics ẋk = f k(xk)
in the phase and amplitude variables as

θ̇k = ωk + f1,k(θk, ρk) + O2(ρk)
ρ̇k = Ak(θk)ρk + o(ρk) .

(11.3)

The function f1,k(θk, ρk) = O(ρk) is defined such that f1,k → 0 for ρk → 0. On the limit cycle we retrieve θ̇k = ωk. With
the Jacobian Lk(θ ) = ∇f (x)

⏐⏐
x=xck(θ )

of f evaluated at the limit cycle xck, and abbreviating ςk(θ ) =
⏐⏐∂θxck(θ )⏐⏐2, the functions

f1,k : S1
× Rn−1

→ S1 and Ak : S1
→ R(n−1)×(n−1) can be found [55] as

f1,k(θ, ρ) =
ωk

ςk(θ )

[
∂θxck(θ )

]⊺[Lk(θ ) + Lk(θ )⊺
]
Mk(θ )ρ

Ak(θ ) = ωk
[
Mk(θ )⊺Lk(θ )Mk(θ ) +

[
∂θMk(θ )

]⊺Mk(θ )
]
.

(11.4)

In the case of a two-dimensional system xk ∈ R2 with limit cycle solution xck(t) = (uk(t), vk(t)), we have ςk =
⏐⏐∂θxck(θ )⏐⏐2 =[

∂θuk(θ )
]2

+
[
∂θvk(θ )

]2 and so the 2 × 1-matrix Mk(θ ) becomes the vector (∂θvk(θ ),−∂θuk(θ )) /
√
ςk(θ ), which fulfills the

required normalization conditions (11.2).
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Coupled oscillators. The approach above can naturally be extended to networks of coupled oscillators by using coor-
dinate transformations Tk for every node k = 1, . . . ,N of the network. For simplicity, we will consider two coupled
nearly-identical oscillators xk, xj with dynamics

ẋk = f (xk) + κ gk(xk, xj) , xk ∈ Rn, (11.5)

and show explicitly how the network extension can be achieved — note that the case ẋk = f (xk) + κ/N
∑N

j=1 gk(xk, xj)
follows analogously for N > 2. Moreover, we briefly revisit the derivation of the phase interaction function H for two
coupled oscillators k ̸= j with strongly attracting limit cycles as in [55]. Considering (11.5), we search for solutions of
the form xk(t) = xc(t) + κ uk(t), where xc(t) denotes the T -periodic limit cycle solution of ẋ = f (x) with frequency
ω = 2π/T , and uk is such that it converges to zero for solutions on the limit cycle x(t) = xc(t).41 We apply the coordinate
transformation T given by (11.1) to both oscillators, which yields the corresponding dynamics in phase and amplitude
variables

θ̇k = ω + f1(θk, ρk) + κ hk(θk, θj) + O(|ρk, ρj|)
ρ̇k = A(θk)ρk + κ dk(θk, θj) + O(|ρj|) + o(|ρk|)

(11.6)

with the functions f1 and A given in (11.4) as well as

hk(θk, θj) =
ω

ς (θk)

[
∂θxc(θ )

]⊺gk
(
xc(θk), xc(θj)

)
dk(θk, θj) = ωM(θk)⊺gk

(
xc(θk), xc(θj)

)
.

(11.7)

Note that (11.6) with (11.7) are general and hold for any coupling strength κ ∈ R at leading order in ρk and ρj, the latter
approximation allows us to evaluate the coupling terms gk at the respective limit cycles. In the case of weak coupling,
0 ≤ κ ≪ 1, and in the limit of strong, or ‘infinite’, attraction, ρk → 0, one can apply averaging as detailed in Section 5.2.
This leads to the phase dynamics of the two coupled oscillators

θ̇k = ω + κ Hk(θk − θj)

with the phase interaction function42

Hk(θk − θj) =
1
2π

∫ 2π

0
ως (φ + θk)−1[∂θxc(φ + θk)

]⊺gk
(
xc(φ + θk), xc(φ + θj)

)
dφ . (11.8)

If allowing for finite attraction to the limit cycle while keeping the weak coupling limit 0 ≤ κ ≪ 1, the normal
coordinates ρk stay κ-close to the limit cycle. Then, we can introduce ρk = κsk, and (11.6) becomes

θ̇k = ω + κ
{
b(θk)sk + ς (θk)−1[∂θxc(θ )]⊺gk

(
xc(θk), xc(θj)

)}
+ O2(κ) ,

ṡk = A(θk)sk + ωM(θk)⊺gk
(
xc(θk), xc(θj)

)
+ O(κ) ,

(11.9)

with b(θk) = ως (θk)−1
[
∂θxc(θ )

]⊺ [L(θk) + L(θk)⊺]M(θk). In order to determine the phase interaction function Hk for finite
ρk, we have to take the additional term b(θk)sk into account when applying averaging as in (11.8). Having defined the
slower time scale τ = κt , we seek for solutions

xk(t) = xc (θk)+ κ uk(t, τ , κ) with θk(τ ) = t + φk(τ ) . (11.10)

uk depends on both t and τ , whereas φk = φk(τ ) are slowly-varying phase deviations from the natural frequency, which
we set to ω = 1 without loss of generality. As detailed in Appendix A.6, the ‘amplitude-corrected’ phase dynamics turns
out to be

θ̇k = 1 + κ H̃k(θk − θj) = 1 +
κ

2π

∫ 2π

0

[
ς (t)−1∂θxc(t)ϱ(t)

]⊺gk
(
xc(t + θk), xc(t + θj)

)
dt (11.11)

with the additional, ‘corrective’ term ϱ(t) when compared to (11.8). For more details, we also refer to [55]. Finally, the
phase dynamics (11.11) can be extended to a network of more than two coupled oscillators as

θ̇k = 1 +
κ

N

N∑
j=1

CkjH̃k(θk − θj)

with Ckj representing the connectivity between nodes k ̸= j.

41 The to-be-presented approach can thus be considered a formal perturbation expansion. It dwells on the Fredholm alternative.
42 An alternative proof to establish the phase equations for oscillatory networks is given by Hoppensteadt and Izhikevich in [Theorem 9.1, 46].
They focus on the phase dynamics of (11.6) and use normal form theory as presented in Section 4.1 to describe perturbations P off the invariant
manifold of (the product of) hyperbolic limit cycles. Ad-hoc they interpret their choice P ≡ 0 as an ‘infinite attraction’ to the invariant manifold and
thus link their result to Ermentrout and Kopell’s work.
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11.1.2. Wegdwood et al.’s reduction
The phase–amplitude reduction approach by Wegdwood, Lin, Thul and Coombes [285] is a generalization of Ermentrout

and Kopell’s approach presented above in that the assumption of infinitely fast attraction to the limit cycle is loosened.
The to-be-reduced phase and amplitude dynamics go beyond the linear order approximation of the amplitude dynamics,
and thus provide a full phase–amplitude description, which is valid for arbitrarily large coupling strengths κ ∈ R. As
before, we will first revisit the theory for a single oscillator and subsequently consider the phase–amplitude dynamics of
an oscillator network.

Single oscillator. We consider an oscillator ẋ = f (x), x ∈ Rn, with an asymptotically stable limit cycle solution xc(t)
with period T and frequency ω = 2π/T . The coordinate transformation T is such that it maps x to variables θ ∈ S1

and ρ ∈ Rn−1. Via this coordinate transformation, a moving orthonormal system is created with one axis pointing in
the direction of a unit tangent vector along the periodic orbit, ξ(θ ) = ∂θxc(θ )

/⏐⏐∂θxc(θ )⏐⏐ with ∂θ = d/dθ as before. The
remaining coordinate axes form the columns of an n × (n − 1) matrix M . Any point x can then be expressed in terms of
its phase.43 θ and its amplitude ρ, analogously to (11.1), as

x = T (θ, ρ) = xc(θ ) + M(θ )ρ , (11.12)

where |ρ| is the Euclidean distance from the limit cycle. We can project the oscillatory dynamics onto the moving
orthonormal system in order to obtain the phase and amplitude dynamics

θ̇ = ω + f1(θ, ρ)
ρ̇ = A(θ )ρ + f 2(θ, ρ)

(11.13)

with

ω−1f1(θ, ρ) = −h(θ, ρ)⊺∂θM(θ )ρ + h⊺(θ, ρ)
[
f
(
xc(θ ) + M(θ )ρ

)
− f

(
xc(θ )

)]
, (11.14a)

ω−1f 2(θ, ρ) = −M(θ )⊺∂θM(θ )ρf1(θ, ρ) + M(θ )⊺
[
f
(
xc(θ ) + M(θ )ρ

)
− f

(
xc(θ )

)
− L(θ )M(θ )ρ

]
, (11.14b)

h(θ, ρ) =

[⏐⏐∂θxc(θ )⏐⏐+ ξ(θ )⊺∂θM(θ )ρ
]−1

ξ(θ ), (11.14c)

A(θ ) = ωM(θ )⊺
[
−∂θM(θ ) + L(θ )M(θ )

]
. (11.14d)

Again, L(θ ) = ∇f (x)
⏐⏐
x=xc (θ ) is the Jacobian evaluated on the limit cycle. Note the overall similarity between (11.13) &

(11.3) and (11.14) & (11.4). As before, f1(θ, ρ) is such that it vanishes for |ρ| → 0, by which we retrieve the unperturbed
phase dynamics on the limit cycle, θ̇ c = ω. For non-vanishing ρ, the function f1(θ, ρ) captures the shear of the oscillatory
dynamics, that is, it determines whether and how the distance to the limit cycle accelerates or decelerates the phase
dynamics [285,286]. The matrix A(θ ) indicates for each phase θ the rate of attraction to or repulsion from the limit cycle.
Moreover, the function h given by (11.14c) plays the role of satisfying a normalization condition similar to (11.2). More
details on the derivation of (11.13) can be found in the Appendix of [285].

In contrast to Ermentrout & Kopell’s reduction, (11.13) is not truncated at any particular order but provides the exact
dynamics of the non-isochronal phase–amplitude coordinates. The validity of (11.13) is not restricted to the basin of
attraction of the limit cycle. Yet, it may no longer hold when the coordinate transformation (11.12) breaks down, which
will happen if the determinant of the Jacobian of the transformation vanishes, i.e. when det

(
∂x/∂θ ∂x/∂ρ

)
= 0. This

cannot occur on the limit cycle, where |ρ| = 0, but may be the case for some |ρ| = k0 > 0. Thus, k0 sets an upper limit
for the distance from the limit cycle up to which the phase–amplitude dynamics (11.13) provide an accurate description.

Coupled oscillators. In a next step, we apply the coordinate transformation (11.12) to two coupled oscillators of the form
ẋk = f (xk) + κ gk(xk, xj) with κ ̸= 0 not necessarily small. Then, the phase–amplitude dynamics in (θk, ρk) for oscillator
xk ∈ Rn becomes

θ̇k = ω + f1(θk, ρk) + κ ωh(θk, ρk)
⊺gk

(
xc(θk) + M(θk)ρk, x

c(θj)M(θj)ρj

)
ρ̇k = A(θk)ρk + f 2(θk, ρk) + κ ωM(θk)⊺B(θk, ρk)gk

(
xc(θk) + M(θk)ρk, x

c(θj) + M(θj)ρj

) (11.15)

with

B(θ, ρ) = In − ∂θM(θ )ρh(θ, ρ)⊺ ;

43 We assume that the phase variable θ ∈ [0, 2π ) as opposed to θ ∈ [0, T ) in [285]. This results in a rescaling of the subsequently reduced phase
and amplitude dynamics by the frequency ω.
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see [285] for more details. The dynamics (11.15) allow for setting up a phase–amplitude model of an oscillator network
ẋk = f (xk) + κ/N

∑N
j=1 Ckjg(xk, xj) in the form

θ̇k = ω + f1(θk, ρk) +
κ

N

N∑
j=1

CkjH1(θk, θj, ρk, ρj)

ρ̇k = A(θk)ρk +
κ

N

N∑
j=1

CkjH2(θk, θj, ρk, ρj)

(11.16)

with appropriate phase and amplitude interaction functions H1 and H2, respectively, corresponding to the coupling terms
in (11.15). These interaction functions also depend on the amplitude variables ρk, ρj of the respective oscillators. In order
to compare the network description (11.15) with Ermentrout & Kopell’s reduction approach of the previous subsection,
one may assume weak coupling κ ≪ 1 and the dynamics being close to the limit cycle so that ρk = κsk. Inserting this in
(11.15), Taylor-expanding the dynamics about sk = 0 and discarding higher order corrections, results in (11.9). Here, it is
important to note that the function f 2 as defined in (11.14b) satisfies f 2(θ, 0) = 0 as well as ∂f 2(θ, 0)/∂ρ = 0.

Wedgwood et al.’s approach is a generalization of the reduced phase–amplitude dynamics by Ermentrout and Kopell.
As of yet, however, there are hardly any network studies that rely on the phase–amplitude network description (11.16).
It will be interesting to apply such an approach for detecting synchronization phenomena in strongly coupled complex
oscillatory networks.

11.2. Augmented phase reductions

Alternatively to the previous phase–amplitude reductions in non-isochronal phase and amplitude coordinates, reduced
phase models may be improved by employing the concept of isochrons and isostables. While isochrons represent the
phase degree of freedom, isostables represent the remaining amplitude degrees of freedom as they define a set of initial
conditions that have the same relaxation rate towards the attracting limit cycle [280]. Since every isostable is independent
of the phase and of other amplitude degrees of freedom, augmented phase reduction is computationally more efficient
and therefore might be an attractive alternative for phase–amplitude descriptions. To the best of our knowledge, there is
yet no extension to coupled oscillators, so that we here stick to single oscillators.

11.2.1. Wilson & Moehlis’ approach via isostables
The concept of isochrons – assigning an asymptotic, or isochronal, phase to any point in the basin of attraction of a

stable limit cycle, see Section 2 – has proven successful to establish a counterpart for stable fixed points, building on
so-called isostables [280], see also [287,288]. Isostables were originally introduced as sets of points in phase space that
converge toward a fixed point simultaneously. In [289], Wilson and Moehlis adapted the notion of isostable coordinates
for use with periodic orbits.

We consider a single oscillator with dynamics ẋ = f (x), x ∈ Rn, and periodic orbit xc(t) with period T and frequency
ω = 2π/T . Then, we choose a point x0 = xc(0) on the limit cycle and denote the corresponding isochron by I0. In the
vicinity of x0, one can analyze the dynamics by a Poincaré map P on I0,

P: I0 → I0; x ↦→ P(x) = φ(T , x) ,

where φ represents the unperturbed flow of the system. This map has x0 as a fixed point and the linearized dynamics on
the isochron I0 around x0 read

P(x) = x0 + J (x − x0) + O2(|x − x0|) (11.17)

with Jacobian J = dP/dx
⏐⏐
x=x0

. If J is diagonalizable with V ∈ Rn×n a matrix with columns of unit length eigenvectors vi

associated with eigenvalues λi for i = 1, . . . , n, the latter are the Floquet multipliers of the periodic orbit. Hence, at least
one λi is equal to one: λn = 1. For every non-trivial Floquet multiplier λi, i < n, Wilson and Moehlis define isostable
coordinates as

ψi(x) = lim
j→∞

[
e⊺i V

−1(φ(t jI, x) − x0
)
e− log(λi)t

j
I/T
]
. (11.18)

Here, t jI is the jth return time to the isochron I0 under the flow φ and ei is the unit vector in the ith direction. The term
e⊺i V

−1 is a left eigenvector of the Jacobian J which selects for an appropriate component of
(
φ(t jI, x) − x0

)
in the basis

of eigenvectors of J . Using the definition of isochrons, it can be shown [290] that this term multiplied by e− log(λi)t
j
I/T

converges to a scalar when j → ∞, which we then call the isostable coordinate. The dynamics of the isostables ψi(x) and
of the isostable response curves I i(t) = ∇ψi(x)

⏐⏐
x=xc (t) can be found as

ψ̇i = kiψi , (11.19a)
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dI i(t)
dt

=

(
kiId − L(t)⊺

)
I i(t) , (11.19b)

where ki = log(λi)/T are the Floquet exponents, L(t) = ∇f (x)
⏐⏐
x=xc (t) is the Jacobian of the oscillatory dynamics and Id

denotes the identity matrix in Rn×n; see [289] and also [291]. To ensure uniqueness of the isostable response curves, we
require, additionally to the T -periodicity, that ∇ψi(x)

⏐⏐
x=x0

· vi = 1. For a (weakly) perturbed oscillator ẋ = f (x) + κ p(t),
we thus obtain the phase and isostable dynamics along the lines of Section 2 as

θ̇ = ω + κ Z(θ ) · p(t) ,
ψ̇i = kiψi + κ I i(θ ) · p(t) , for i = 1, . . . , n − 1,

(11.20)

which we refer to as the augmented phase reduction. Note that the additional isostable dynamics do not lead to a correction
of the phase dynamics, as the latter is independent of ψi. Below, we will show how (11.20) can be extended such
that the additional knowledge about the relaxation dynamics toward the periodic orbit does indeed lead to improved
phase dynamics. In practice, isostable coordinates ψi with sufficiently small Floquet multipliers λi can be ignored: any
perturbation in this direction rapidly decays, and can be assumed to vanish. This leads indeed to a reduction of the n-
dimensional system (11.20) to a lower-dimensional system with those isostables discarded whose Floquet multipliers are
sufficiently small.44

11.2.2. Shirasaka, Kurebayashi & Nakao’s approach via the Koopman operator
Isochrons and isostables may be understood from a unified point of view of the spectral properties of the Koopman

(composition) operator [280,281]. Capitalizing on the Koopman operator theory, Shirasaka et al. [282] developed an
alternative approach that leads to the augmented phase reduction (11.20). Considering the same setting as before, the
Koopman operator U t is a linear operator that describes the evolution of a function defined on the phase space, called
an observable f :Rn

→ C. It is defined as U t f (x) = f ◦ φ(t, x), where ◦ denotes the composition of functions and φ is the
flow associated with the dynamics ẋ = f (x), x ∈ Rn. It can be shown [293,294] that U t has eigenfunctions si(x) associated
with eigenvalues ki, i = 1, . . . ,N , that is,

U tsi(x) = ekitsi(x) , (11.21)

where ki = log(λi)/T with T = 2π/ω the period of the limit cycle solution xc(t) of ẋ = f (x), and λi the Floquet
multipliers as in the previous sub-section. By convention, we set λn = 1 so that kn = iω. Note that the ki correspond
to the characteristic exponents of the limit cycle and thus reflect the spectral property of the system. Assuming that f is
twice continuously differentiable, the eigenfunctions si are continuously differentiable and exist on the whole basin of
attraction, which underlines the isochronal character of the augmented phase reduction. When introducing amplitudes
of the state x of the system by ψi(x) ≡ Re

(
si(x)

)
for i = 1, . . . , n − 1, then

ψ̇i = kiψi

holds, as in (11.19a). We set the phase of x as θ (x) ≡ arg
(
sn(x)

)
∈ [0, 2π ). Because of kn = iω, we have θ̇ = ω. This

definition coincides with that of the asymptotic phase, see Section 2. With this, we retrieve isochrons as level sets of θ
and isostables as level sets of |ψi|.

For a perturbed system of the form ẋ = f (x) + κ p(t), the corresponding phase and amplitude dynamics can be found
as

θ̇ = ω + κ Z
(
θ, ψ1, . . . , ψn−1

)
· p(t) ,

ψ̇i = kiψi + κ I i
(
θ, ψ1, . . . , ψn−1

)
· p(t) , for i = 1, . . . , n − 1,

(11.22)

where Z = ∇θ and I i = ∇ψi denote the phase sensitivity function and the isostable response functions, respectively.
Note that Z and I i are evaluated at the state vector x ∼=

(
θ, ψ1, . . . , ψn−1

)
when written in phase–amplitude coordinates.

For small perturbations with |κ| ≪ 1, one can approximate (11.22) by evaluating the phase sensitivity and the isostable
response functions at the limit cycle (where ψ1 = · · · = ψn−1 = 0), which yields (11.20),

θ̇ = ω + κ Z(θ ) · p(t) ,
ψ̇i = kiψi + κ I i(θ ) · p(t) , for i = 1, . . . , n − 1,

when neglecting terms of order κ2.

44 As to the computation of the isostable response functions I i(θ ), standard approaches comprise direct or adjoint methods: Similar to determine the
phase sensitivity function Z , one can either perturb the oscillatory dynamics at various phases and records the corresponding changes, see also [289],
or one can solve the adjoint problem associated with (11.19b), cf. [289,291]. There are, however, numerical subtleties to obtain an accurate solution.
The direct method suffers from the common numerical artifacts when considering infinitesimal perturbations |p| → 0. The adjoint method dwells
on the integration of (11.19b) backward in time, which may lead to an unstable periodic solution [282,292]. Alternatively, the computation of I i(θ )
can be formulated as a boundary value problem to be solved with Newton iteration, see also Section 11.3.1 and [Section 4.1,292] for details. This
approach is similar to the algorithms for computing the phase sensitivity function Z as proposed by Govaerts and Sautois [98] and implemented in
MatCont [99].

http://www.scholarpedia.org/article/MATCONT
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In order to compute the isostable response functions I i evaluated at the limit cycle, Shirasaka et al. propose a bi-
orthogonalization method. In fact, they present their theory for transient dynamics x∗(t) that start far from, but eventually
approach the attracting limit cycle solution xc(t), see [282] for more details. A first observation is that Z(θ ) = Z

(
xc(t)

)
and I i(θ ) = I i

(
xc(t)

)
are the left eigenvectors of the monodromy matrix ∂φ(T , x)/∂x

⏐⏐
x=xc (t), which are also called the

adjoint covariant Lyapunov vectors [295–297]. Next, one can introduce logarithmic amplitudes ψ̃i(x) = log
(
|ψi(x)|

)
for

i = 1, . . . , n−1. By convenience, ψ̃n(x) = θ (x). The calculation of the gradients ∇ψ̃i of the logarithmic amplitudes is very
similar to the conventional phase reduction, and Z and I i can be readily inferred from ∇ψ̃i by rescaling and normalizing
according to

I i
(
x∗(t)

)
· f
(
x∗(t)

)
= kiψi and Z

(
x∗(t)

)
· f
(
x∗(t)

)
= ω . (11.23)

The resulting adjoint equations for ∇ψ̃i are [282]

d∇ψ̃i
(
x∗(t)

)
dt

= −

[
∇f (x)

⏐⏐
x=x∗(t)

]⊺
∇ψ̃i

(
x∗(t)

)
, (11.24)

which are to be solved with an appropriate end condition that can approximately be taken as ∇ψ̃i
(
x∗(τ )

)
∥ I i(θ )

⏐⏐
θ=θ∗ for

some final t = τ and θ = θ∗. Furthermore, the proposed numerical method relies on bi-orthogonal dual vectors γ i of
∇ψ̃i, i.e. γ i

(
x∗(t)

)
· ∇ψ̃j

(
x∗(t)

)
= δij. The vectors γ i satisfy

γ̇ i
(
x∗(τ )

)
= ∇f (x)

⏐⏐
x=x∗(t)γ i

(
x∗(τ )

)
, (11.25)

and can thus be regarded as the covariant Lyapunov vectors extended to transient regimes. The resulting
bi-orthogonalization method for computing the phase and amplitude dynamics

θ̇ = ω + κ Z
(
x∗(t)

)
· p(t) ,

ψ̇i = kiψi + κ I i
(
x∗(t)

)
· p(t) , for i = 1, . . . , n − 1,

of some (transient) dynamics x∗(t) during a time span t ∈ (0, τ ) comprises the following steps:

(a) evaluate the adjoint Lyapunov vectors on the limit cycle and the Floquet exponents ki;
(b) calculate the bi-orthogonal dual vectors γ i

(
x∗(0)

)
at the initial time t = 0 from ∇ψ̃i

(
x∗(0)

)
, the latter can be

obtained by a direct numerical simulation and using Fourier averages, see also Section 11.3.2;
(c) obtain Z

(
x∗(t)

)
along the transient x∗(t), t ∈ (0, τ ) by backward integration of (11.24) with an appropriate end

condition at t = τ as mentioned above;
(d) obtain the dual vector γn

(
x∗(t)

)
for t ∈ (0, τ ) by forward integration of (11.25);

(e) obtain ∇ψ̃1
(
x∗(t)

)
by backward integration of (11.24) while subtracting relatively an unstable mode Z

(
x∗(t)

)
;

(f) obtain the dual vector γ1
(
x∗(t)

)
by forward integration of (11.25) while subtracting relatively an unstable mode

γn
(
x∗(t)

)
;

(g) perform (e) and (f) consecutively to obtain ∇ψ̃i
(
x∗(t)

)
and γ i

(
x∗(t)

)
for i = 2, . . . , n − 1 (note that all relatively

unstable modes should be subtracted during integration);
(h) obtain Z

(
x∗(t)

)
and I i

(
x∗(t)

)
normalized with respect to (11.23).

In practice, isostables associated with Floquet multipliers λi close to zero can be approximately assumed to vanish so
that it suffices to consider only the first 1 ≤ m ≪ n − 1 modes. The bi-orthogonalization method for transient dynamics
off the limit cycle provides the (infinitesimal) phase and amplitude responses on the limit cycle by default. As said, Z(θ )
and I i(θ ) are the adjoint covariant Lyapunov vectors (left eigenvectors of the monodromy matrix), and can be obtained
by QR-decomposition methods [295,297] or by spectral dichotomy approaches [298,299], yielding the desired augmented
phase reduction (11.20).

11.2.3. Wilson & Ermentrout’s second-order phase reduction
Augmented phase reduction provides a powerful framework for improving the accuracy of reduced phase dynamics

of oscillatory systems. Although the phase dynamics decouple from the isostable dynamics, augmented phase reduction
is beneficial: By keeping track of the isostable coordinates, one can ensure that their magnitude remains limited and the
reduced phase dynamics hence valid. Compared to the phase–amplitude reduction in Section 11.1, however, it is desirable
to use the knowledge about the isostable dynamics in order to correct the phase dynamics away from the direct vicinity
of the limit cycle. By employing a second-order approximation of the phase and isostable dynamics, one can achieve
an improved augmented phase reduction where the phase and isostable dynamics are mutually dependent. Wilson and
Ermentrout presented the corresponding theory in [290], which we will briefly sketch here. The underlying idea is to
consider the dynamics about the limit cycle not in linear, but in second order. Given a system ẋ = f (x) with a T -periodic
limit cycle solution xc(t), we consider an infinitesimal perturbation ∆x to the periodic orbit xc(t) at time t = 0. The
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transient dynamics x(t) = xc(t) + u(t) due to the perturbation can be given by second-order approximation

u̇(t) = L(t)u +
1
2

⎡⎢⎢⎣
u⊺H1(t)
u⊺H2(t)

...

u⊺Hn(t)

⎤⎥⎥⎦ u + O3(|u|) (11.26)

with L(θ ) = ∇f (x)
⏐⏐
x=xc (t) and H i(t) the ith component of the Hessian matrix ∇

(
∇f (x)

)⏐⏐
x=xc (t) of second partial derivatives

evaluated at the limit cycle. The phase shift due to the initial perturbation ∆x at t = 0 may be written as

∆θ = Z(t)∆x +
1
2∆x⊺Hθ,xc (t)∆x + O3(|∆x|) , (11.27)

where Z(t) = ∇Θ(x)
⏐⏐
x=xc (t) is the phase sensitivity function and Hθ,xc (t) denotes the Hessian matrix of second derivatives

of the asymptotic phase map Θ evaluated at xc(t). For infinitesimal perturbations we thus have
∂θ

∂x
=
∂Θ

∂x
= Z(θ ) + Hθ,xc (θ )∆x + O2(|∆x|) . (11.28)

Likewise, we find the gradient of the isostable coordinates in a second-order approximation as
∂ψi

∂x
= I i(θ ) + Hψi,xc (θ )∆x + O2(|∆x|) for i = 1, . . . , n − 1, (11.29)

where Hψi,xc (θ ) is the Hessian matrix of ψi evaluated at xc(t). In the vicinity of the limit cycle solution, one can use Floquet
theory [300,301] and write

∆x(t) =

n∑
j=1

cjekjtqj(t)

with kj the Floquet exponents from before, qj(t) are T -periodic vectors, and cj are appropriately chosen to satisfy initial
conditions. With the definition of isostables (11.18) it is possible to show [290] that cj = ψj so that ∆x can be given in
terms of phase and isostable coordinates:

∆x(θ, ψ1, . . . , ψn−1) =

n−1∑
j=1

ψjpj(θ ) , (11.30)

where pj
(
θ (0) + ωt

)
= qj(t) with frequency ω = 2π/T . By using dθ/dt = ∂θ/∂x · dx/dt , we can combine (11.30) and

(11.28) to obtain a second-order correction to the phase dynamics of the perturbed system ẋ = f (x)+κ p(t). Analogously,
we can use dψi/dt = ∂ψi/∂x · dx/dt together with (11.30) and (11.29) for a second-order correction to the isostable
dynamics. This yields the second-order augmented phase reduction

θ̇ = ω + κ

⎧⎨⎩Z(θ ) · p(t) +

n−1∑
j=1

[
bj(θ )ψj

]
· p(t)

⎫⎬⎭ ,
ψ̇i = kiψi + κ

⎧⎨⎩I i(θ ) · p(t) +

n−1∑
j=1

[
c ji(θ )ψj

]
· p(t)

⎫⎬⎭ ,
(11.31)

for i = 1, . . . , n − 1 and with vectors bj and c ji given by

bj(θ ) = Hθ,xc (θ )pj(θ ) and c ji(θ ) = Hψi,xc (θ )pj(θ )

The phase dynamics of (11.31) depends on the isostable coordinates and can be understood as a second-order correction
to the standard phase reduction.

In order to close the system (11.31), one has to compute the Hessian matrices Hθ,xc (θ ) and Hψi,xc (θ ) as well as the vectors
pj. The latter can be approximated numerically by exploiting the linearization of the Poincaré map P given by (11.17).
The matrices Hθ,xc (θ ) and Hψi,xc (θ ) can be found as solutions to adjoint problems that involve the Hessian matrices H i(t).
To be precise, denoting by Zk the kth component of the phase sensitivity function Z , Hθ,xc (θ ) is the T -periodic solution to

dHθ,xc (θ )

dt
= −

n∑
k=1

[
Zk(t)Hk(t)

]
− L(t)⊺Hθ,xc (θ ) − Hθ,xc (θ )L(t)

subject to the normalization condition −L(t)⊺Z(t) = Hθ,xc (θ )f
(
xc(t)

)
. Likewise, for every i = 1, . . . , n − 1, one can find

Hψi,xc (θ ) as the T -periodic solution to

dHψi,xc (θ )

dt
= kiHψi,xc (θ ) −

n∑
k=1

[
Ii,k(t)Hk(t)

]
− L(t)⊺Hψi,xc (θ ) − Hψi,xc (θ )L(t) ,
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which satisfies the normalization condition
(
kiId − L(t)⊺

)
Z(t) = Hψi,xc (θ )f

(
xc(t)

)
, where Ii,k is the kth component of

the isostable response function I i(t) = I i
(
xc(t)

)
. For the mathematical details we refer to [290]. There, one also finds

a discussion about the computational effort required to obtain the matrices Hθ,xc (θ ),Hψi,xc (θ ). An alternative and more
efficient strategy is to directly compute the terms bj and c ji, as recently proposed by Wilson [302].

11.2.4. Extension to coupled oscillators
Extending the phase and isostable dynamics to networks of coupled oscillators is a natural next step. In view of

two coupled oscillators, ẋk = f (xk) + κ gk(xk, xj), the perturbation term p in (11.20) or (11.31) will be replaced by the
coupling term gk(xk, xj) and the states xk have to be expressed in terms of the respective phase and amplitude variables
(θk, ψ1,k, . . . , ψn−1,k). For the first-order augmented phase reduction (11.20) close(r) to the limit cycle, the coupling
term gk(xk, xj) can be approximately evaluated on the limit cycle with vanishing isostable coordinates, ψi,k = 0 for
i = 1, . . . , n− 1, which seems in line with the linear approximation. For the second-order reduction (11.31), by contrast,
the isostable dynamics ψi,k and ψi,j of both oscillators ought to be taken into account in the reduced phase dynamics.
Such an approach resembles the phase–amplitude reductions presented earlier to great extent, and can be used to derive
a network phase model similar to (11.16).

11.3. Global isochrons and isostables

Essential ingredients to determine the oscillator’s response to perturbations are the phase sensitivity function Z and
the isostable response functions In as the gradients to the phase and amplitude (isostable) coordinates. Leading order
approximations of the reduced phase and isostable dynamics capitalize on phase sensitivity and isostable response
functions that are evaluated at the limit cycle, on which isostable coordinates vanish. Beyond first order, it is possible
to introduce a phase reduction with global phase sensitivity and isostable response functions as

θ̇ = ω + κ Z(θ, ψ1, . . . , ψn−1) · p(t) ,
ψ̇i = kiψi + κ In(θ, ψ1, . . . , ψn−1) · p(t) , for i = 1, . . . , n − 1,

(11.32)

where Z and In are now evaluated along the full, or global, isochrons and not only in the mere vicinity of the periodic
orbit. This reduction is exact in the whole basin of attraction of the limit cycle. While the to-be-presented approaches have
not been extended to (weakly) coupled oscillators, we restrict their presentation to a single, weakly perturbed oscillator
but remark that a possible network extension may follow the lines of Section 11.2.4.

11.3.1. Osinga et al.’s approach via a boundary value problem
The computation of isochrons dates back to the work by Winfree [19], introduced in more detail in Section 3.1.

Isochrons cannot be found explicitly, except for very few examples, and numerical techniques must be employed. Knowing
the (geometry of) isochrons in the whole basin of attraction of a stable limit cycle automatically leads to a full picture of
the phase dynamics of a system subject to perturbations. The (numerical) computation of isochrons beyond a first local
approximation in the neighborhood of the limit cycle, however, is not a trivial task. This is especially true in regions where
isochrons accumulate and small perturbations have large effects, giving rise to the notion of extreme phase sensitivity.
The here presented method by Osinga and co-workers to compute global isochrons, which is based on the continuation of
a two-point boundary value problem, is applicable even in these regions of extreme phase sensitivity [303], see also [304].

We reconsider the linearized dynamics x(t) = xc(t)+u(t) about the T -periodic orbit xc(t) of the system ˙x = f (x), that is,
u̇(t) = L(t)u(t) where L(t) = ∇f (x)

⏐⏐
x=xc (t) as usual. If u(0) is tangent to an isochron, then u(T ) = λu(0) with λ the Floquet

multiplier for the periodic orbit. Locally, an isochron is given by the stable eigenvector of the linearization about the
periodic orbit. This defines a boundary value problem and one can trace out isochrons by using different (small-magnitude)
vectors in the direction u(0). In some cases, e.g., for slow–fast systems exhibiting so-called relaxation oscillations, |λ| can
be quite small and it is advantageous to define u(t) = elog(λ)tw(t) and τ = t/T . Then, the two-point boundary value problem
reads

dw
dτ

= T
[
L(τ ) − log(λ)

]
w ,

w(1) = w(0) .
(11.33)

As demonstrated in [303,304], the boundary value problem (11.33) can be solved with the numerical continuation software
package AUTO [305].

11.3.2. Mauroy & Mezić’s approach via Fourier averages
In contrast to identifying invariant sets, the approach by Mauroy and Mezić [306] employs the Koopman operator

theory and tracks observables (or measures on a state space) to construct isochrons. Using the notation of Section 11.2.2
for the Koopman operator U t f (x) = f ◦ φ(t, x) of an observable f and the flow φ associated with the dynamics ẋ = f (x),

http://indy.cs.concordia.ca/auto/
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Mauroy and Mezić observed that isochrons of an T -periodic orbit xc(t) with frequency ω = 2π/T are level sets of the
Fourier averages

f ∗

ω (x) = lim
τ→∞

1
τ

∫ τ

0
U t f (x)e−iωtdt . (11.34)

This follows from the fact that Fourier averages are eigenfunctions of the Koopman operator U t . Fourier averages can
be computed numerically for specific trajectories using forward integration of a set of initial condition. Isochrons can
subsequently be obtained through interpolation. When considering complex-valued arguments λi instead of ω ∈ R, then
(11.34) becomes a Laplace average. These play a key role for computing the isostables [307].

Furthermore, Mauroy & Mezić’s approach can be used to estimate the phase sensitivity function Z and the isostable
response functions I i, see [307] for the computational details. As the proposed method relies on forward integration, it is
well-suited to compute phase and amplitude coordinates also in high-dimensional spaces.

11.3.3. Castejón, Guillamon & Huguet’s approach via Lie symmetry
Another elegant approach to compute the phase and isostable coordinates has been proposed by Castejón, Guillamon

and Huguet [291,308,309] for planar oscillatory dynamics. The stable manifold theorem [91] guarantees the existence
of isochrons for a system ẋ = f (x) T -periodic hyperbolically stable limit cycle solution xc(t) ∈ R2. Following a
parameterization method [310], one can build on the existence of an analytic local diffeomorphism K : S1

× [ρ−, ρ+] →

R2
; (θ, ρ) ↦→ K (θ, ρ) around the limit cycle and which satisfies the invariance equation

ω
(
∂θ + kρ∂ρ

)
K (θ, ρ) = f

(
K (θ, ρ)

)
, (11.35)

with ω = 2π/T the frequency and k the characteristic exponent of the limit cycle. Note that the change to phase–
amplitude coordinates (θ, ρ) allows for describing the dynamics as consisting of a rigid rotation with constant velocity ω
for θ and a contraction (if k < 0) with exponential rate kω for ρ, that is,

θ̇ = ω and ρ̇ = λωρ

with associated flow φ
(
t, K (θ, ρ)

)
= K

(
θ + tω, ρekωt

)
.

The parameterization K can be computed numerically, using, e.g., a series method [308] or a Newton method [309].
Moreover, isochrons and isostables as well as the phase sensitivity function and the isostable response function can be
retrieved from the solution for K within the whole basin of attraction of the limit cycle. According to [Theorem 3.1, 308],
isochrons are the orbits of a vector field y satisfying the Lie symmetry [y, f ] = ωky, which can alternatively be formulated
as y ◦ K (θ, ρ) = ∂ρK (θ, ρ). Isostables are the orbits of a vector field z satisfying [z, f ] = [f , z] = 0. The global phase
sensitivity and isostable response functions can then be found [291] as

Z(x) = Z
(
K (θ, ρ)

)
=

J∂ρK (θ, ρ)(
J∂ρK (θ, ρ)

)⊺
∂θK (θ, ρ)

I(x) = I
(
K (θ, ρ)

)
=

J∂θK (θ, ρ)(
J∂ρK (θ, ρ)

)⊺
∂θK (θ, ρ)

with J =

(
0 −1
1 0

)
. The global phase sensitivity function can readily be evaluated at the limit cycle, where ρ = 0. With

K (θ, 0) = xc(θ ) and ∂ρK (θ, 0) = y
(
K (θ, 0)

)
=: K1(θ ), we then have

Z(θ ) =
JK1(θ )(

JK1(θ )
)⊺f (xc(θ )) .

In [291,308], it has been shown that the adjoint method for computing the phase sensitivity function Z(θ ) and the isostable
response function I(θ ) evaluated at the limit cycle, can also be extended to a neighborhood of the limit cycle. By this, the
‘standard’ adjoint method (Section 3.4) finds support to be applied for an accurate phase reduction beyond leading order
approximations around the limit cycle.

12. Conclusion

Phase reduction is a classical, yet powerful technique for the analysis of oscillatory dynamics. The rigorous reduction
to phase models allows for reformulating the dynamics of high-dimensional and analytically intractable models in a
convenient way and to better understand (and control) a system’s behavior. In this report our focus was on the extension
of phase reduction techniques for complex oscillatory networks. Phase synchronization has become a well-established
paradigm for investigating emergent phenomena and collective dynamics of complex networks. By deriving the phase
dynamics of every oscillatory node of the network, including the corresponding coupling dynamics between them, one
can reveal invaluable information about the entire network and readily infer the dynamic state of the network. Phase
reduction thus proves auspicious and prospective for exploring, characterizing, and analyzing the dynamics of complex
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oscillatory networks. There is, however, no unique method for a rigorous reduction to a phase model of networks of
coupled oscillators, nor a straightforward recipe along which the phase dynamics should be reduced. Instead, one has
to choose from a variety of different phase reduction techniques, all of which have their advantages and disadvantages.
The various methods can be classified as either numerical, or analytic in nature, and stem from disciplines as different
as the physics of complex systems, applied mathematics and nonlinear dynamics, as well as engineering. All in all,
this renders the notion of phase dynamics somewhat ambiguous and, for any chosen technique, one ought to consider
the reduced phase dynamics with care. This observation had led us to review and discuss the most prominent phase
reduction techniques. With this report we aimed for creating a unified language of phase reduction applied to complex
oscillatory networks by revisiting the different techniques, highlighting their similarities and differences, and pinpointing
their limitations and caveats.

Not only did we shed light on the diversity of methods and the underlying methodologies, we also compared the
outcome of the different reduction techniques in both qualitative and quantitative ways. We guided the presentation of
our results along networks of weakly coupled, near-identical oscillators close to a Hopf bifurcation. Let us briefly recap
why.

(1) The coupling strength between oscillators is assumed to be sufficiently small. This guaranteed that each oscillator’s
dynamics remained close to its unperturbed limit cycle and the dynamics could be assumed to relax back to the
limit cycle instantaneously. Weak coupling cannot induce a bifurcation of the nodal dynamics. This allowed for
disentangling the phase reduction of the oscillator network. That is, we could safely capitalize on the existing results
about phase reduction for a single oscillator and readily extend these results to networks.

(2) The vicinity to a supercritical Hopf bifurcation ensured that the oscillatory dynamics could be reduced to Hopf
normal form. Oscillations emerging through a Hopf bifurcation are generic. There exist abundant examples of
real-life systems that can be described in this way. Nevertheless, there are other generic bifurcations that lead
to oscillations, e.g., SNIC of homoclinic bifurcations. Normal forms and canonical models are available in these
cases and they simplify a network analysis. Yet, the Hopf bifurcation guarantees a rigorous step-by-step normal
form reduction along which the concept of isochrons can be upheld. Here, this assumption allowed for a detailed
comparison between all phase reduction techniques.

(3) The coupling between oscillators was assumed to be pairwise. Together with the assumption of nearly identical
oscillators, this facilitated a phase reduction of the network in so far that it sufficed to consider the phase dynamics
of only two coupled oscillators and extend the results to the full network. In addition, the reduced phase interaction
function exhibited all information required to infer and predict a network’s phase synchronization properties. We
distinguished between linear and non-linear coupling schemes. Extending settings to non-linear coupling offers
application to more realistic network models. By the same token, our approach made the strengths and weaknesses
of the different reduction techniques visible.

We prepared a thorough comparison between different phase reduction techniques. Insights about phase reduction of
a single oscillator proved indispensable for the subsequent steps. We reviewed different approaches to derive a phase
model from oscillatory dynamics in the first part of this report. Here, we introduced the distinction between numerical
and analytic reduction techniques. The latter heavily rely on the generic normal form of the underlying dynamics, so
that we complemented the first part with a discussion about the relation between phase reductions and normal forms.
Given the role of the Hopf bifurcation for later sections, we put particular emphasis on Hopf normal form reductions and
exemplified the different phase reduction techniques for a single oscillator in Hopf normal form.

Subsequently, we turned to oscillator networks. A first and important section was devoted to collective behavior of
complex networks and how the concept of (phase) synchronization can be used to characterize the network dynamics.
After having revisited Malkin’s theorem for weakly coupled oscillators, we extended the previously established phase
reduction techniques to a network of coupled oscillators in Hopf normal form. This involved a closer inspection of a
network Hopf normal form, followed by a section how this network normal form can be reduced from underlying network
dynamics.

We then presented a careful application of the phase reduction techniques to two exemplary network models. The first
one consisted of coupled Brusselators and the second of coupled Wilson–Cowan neural masses. The two corresponding
sections served to underline the differences between the techniques as well as their respective sensitivity to non-linear
coupling terms, which often occur in real-life systems. Sticking to the assumptions above, we compared the different
analytic and numerical approaches: Analytic techniques, which naturally split into a two-step reduction consisting of a
normal form reduction and a subsequent phase reduction, have the advantage that they allow for a parameterization
of the reduced phase model in terms of the original model parameters. When using numerical reduction techniques, by
contrast, the link between phase model and original parameters may remain opaque unless phase reduction is extensively
applied across large regions of parameter space. Numerical approaches can be used to reduce phase dynamics for almost
every kind of oscillatory dynamics, whereas analytic approaches rely heavily on emerging oscillations via a particular
bifurcation. However, once a system has been brought into Hopf normal form, all phase reduction techniques, including
numerical approaches, result in the same reduced phase model, at least, in leading order. Notable differences between
analytic approaches may emerge due to different normal form reductions whose accuracy depends on the distance to the
Hopf bifurcation point. Very close to this point, the reduced phase models coincide almost perfectly for different analytic
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and numerical reduction techniques. For larger distances from the bifurcation point, however, numerical techniques
clearly outperform the analytic ones. A combination of both analytic and numerical reduction techniques, hence, appears
unavoidable when looking for a complete picture of the emerging collective dynamics of interacting oscillators.

A brief comment is at place about the Haken approach, also coined ad-hoc averaging. This method clearly stands out
for its pragmatic applicability. It allows for expressing the phase model parameters in terms of the original dynamics, in
a straightforward way. The method also avoids the assumptions of the theory for weakly coupled oscillators. As long as
small-amplitude oscillatory dynamics are of (or can be transformed into) circular shape, it is possible to (semi-) analytically
reduce the corresponding phase dynamics — no matter whether these oscillations have emerged through a supercritical
Hopf, any other or no bifurcation at all, whether they are induced by changes in coupling strength or in coupling direction,
or induced by noise or delay. This approach may lack some mathematical rigor and the reduced phase dynamics have to
be compared to the actual evolution of the phases. However, it can readily hint at the role of particular model parameters
on the network dynamics, which can only be achieved by numerical techniques by a computationally expensive scanning
of the parameter space.

A thorough comparison between different methodological approaches usually involves a quantitative account to what
extent these techniques generate qualitatively equivalent results, which, in our case, are the reduced phase models. It
would be desirable to present particular error estimates for each technique. When based on the original model parameters,
it might be possible to set upper bounds beyond which a reduction technique can no longer be applied to determine the
corresponding phase dynamics at a given (small) error. Such estimates are, however, few and far between. We hope that
our inventory will serve to establish this long-needed error estimation.

As a potential way forward, we have indicated several ways of extending the presented phase reduction techniques
for complex oscillatory networks. For a (better) understanding of realistic and physically meaningful, heterogeneous, and
possibly time-varying networks through phase reduction, it is fundamental to consider the phenomenology of phase
reduction of complex networks in rather simple setups, as considered here. Phase reduction can indeed be applied when
loosening most of our main assumptions, such as homogeneity of oscillators or the pairwise coupling structure, and
when including time delay as well as stochastic or time-varying inputs. We provided a brief review of phase–amplitude
reductions beyond the weak coupling limit. Although we hinted at ways in which phase–amplitude models for a network
of coupled oscillators may be reduced, as of yet few to no studies in this direction exist. After all, establishing a phase–
amplitude description for networks is a natural next step. A unified treatment of the topic as presented here together
with possible extensions can and may pave the way for an improved understanding of the collective behavior (and the
control) of complex oscillatory networks through phase reduction.
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Appendix A. Mathematical details

A.1. Malkin’s theorem for weakly coupled oscillators

Malkin’s theorem states that a network of weakly coupled oscillators can conveniently be reduced into a phase model
θ̇k = ωk+H(θ1−θk, . . . , θN −θk) so that the collective dynamics of the network can readily be inferred from the properties
of the phase interaction function H . The proof builds on a singular perturbation approach and capitalizes on the separation
of time scales between the (relatively fast) natural oscillation of the independent oscillators, and their slowly accumulating
phase deviations due to the weak coupling. We follow the presentation in [65]; cf. also [46]. For simplicity, we consider
two weakly coupled oscillators x, x′

∈ Rn with dynamics

ẋ = f (x) + κ g(x, x′), 0 ≤ κ ≪ 1; (A.1.1)

the results naturally extend to networks of N > 2 coupled oscillators. The uncoupled dynamics, κ = 0, describes a
T -periodic limit cycle C. Along the corresponding trajectory xc(t) on C, one can define a uniformly increasing phase
θ (t) = ωt + φ mod T , where the constants φ, φ′ denote the relative phase of the oscillators x, x′, respectively. Without
loss of generality, we set the natural frequency to one, ω = 1. We can parametrize the limit cycle by the phase via
xc(t) = xc

(
θ (t)

)
= xc

(
t + φ

)
. For small perturbations, or for weak coupling, the oscillator will be moved away from the

limit cycle, but can be assumed to stay in its immediate vicinity, so that one can approximate the solution of (A.1.1) by
x(t) ≈ xc

(
t + φ(t)

)
. Note that the relative phase φ(t) has become a function of time t .

As said, it is convenient to define a ‘‘slow time’’ τ = κt , giving rise to the time-scale on which the coupling effects can
build up. We assume that solutions x, x′ to (A.1.1) can be expressed as power-series in κ that depend on both t and τ ,
that is,

x(t, τ ) = x0(t, τ ) + κx1(t, τ ) + O(κ2)
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and a corresponding expression holds for x′. When substituting these expansions into (A.1.1) and using d
dt =

∂
∂t + κ ∂

∂τ
,

one obtains
∂x0
∂t

+ κ

(
∂x0
∂τ

+
∂x1
∂t

)
+ O(κ2) = f

(
x0 + κx1 + O(κ2)

)
+ κ g

(
x0 + κx1 + O(κ2), x′

0 + κx′

1 + O(κ2)
)
. (A.1.2)

After expanding the vector functions f and g in terms of κ as

f
(
x0 + κx1 + O(κ2)

)
= f (x0) + κ∇f (x)

⏐⏐
x=x0

x1 + O(κ2)

g
(
x0 + κx1 + O(κ2), x′

0 + κx′

1 + O(κ2)
)

= g
(
x0, x′

0

)
+ O(κ)

(A.1.3)

and inserting (A.1.3) into (A.1.2), we collect terms of the same order in κ . At leading order O(1), we find
∂x0
∂t

= f (x0) , (A.1.4)

which describes the dynamics of the uncoupled oscillators. Eq. (A.1.4) implies that the relative phase φ is constant on the
(fast) time-scale t , but evolves with respect to the slow time τ , that is, x0 = xc

(
t + φ(τ )

)
. One can use these solutions to

find for the order O(κ)-terms in (A.1.2) (and after shifting t appropriately)

Lx1 ≡
∂x1
∂t

− L(t)x1 = g
(
xc(t), xc

(
t + φ′(τ ) − φ(τ )

))
− f

(
xc(t)

)dφ
dt

, (A.1.5)

where L(t) = ∇f (x)
⏐⏐
x=xc (t). Given the linear operator Lx ≡

∂x
∂t − L(t)x, the solvability of (A.1.5) can be proven by

dwelling on the Fredholm alternative for linear differential equations with T -periodic coefficients [283]. The corresponding
solvability equation requires that

1
T

∫ T

0
Z(t) ·

[
g
(
xc(t), xc

(
t + φ′(τ ) − φ(τ )

))
− f

(
xc(t)

)dφ
dt

]
dt = 0 (A.1.6)

with Z a T -periodic solution of the adjoint equation

L∗Z = −
∂Z
∂t

− L(t)⊺Z = 0 .

In order to obtain uniqueness, one normalizes Z(t) according to

1
T

∫ T

0
Z(t) · f

(
xc(t)

)
dt = 1 ,

which is equivalent to setting Z(0) · f
(
xc(0)

)
= 1. Eventually, we can rearrange (A.1.6) and obtain the phase dynamics (in

the ordinary phase variable θ = ωt + φ and recalling that τ = κt)

θ̇ = ω + κ H(θ ′
− θ ) with H(ψ) =

1
T

∫ T

0
Z(t) · g(xc(t), xc

(
t + ψ

)
)dt .

A.2. Kuramoto’s reductive perturbation

A.2.1. Basic theory
Let us consider two coupled systems x, x′

∈ Rn, whose dynamics are described by

ẋ = f (x, t;µ) + κg(x, x′, t;µ) (A.2.1)

and an equivalent expression holds for x′, with f :Rn
→ Rn, the coupling function g:Rn

×Rn
→ Rn with coupling strength

κ ∈ R and a bifurcation parameter µ ∈ R. We assume x0(µ) a steady solution for κ = 0, i.e., f (x0(µ);µ) = 0 for all µ.
We set

x̃ = x − x0 and x̃′
= x′

− x0 ,

and expand f around x = x0, or around x̃ = 0, respectively. By omitting the tilde, we have

f (x;µ) = n1(x;µ) + n2(x, x;µ) + n3(x, x, x;µ) + O(|x|4) ,

where the nk are given by

nk(u(1), u(2), . . . , u(k)
;µ) =

n∑
i1,...,ik=1

1
k!

(
∂kF (x;µ)

∂xi1∂xi2 . . . ∂xik

)
x=0

u(1)
i1
u(2)
i2
. . . u(k)

ik
(A.2.2)

with u(j)
=

(
u(j)
1 , . . . , u

(j)
n

)
∈ Rn. Note that the nk are symmetric in their arguments u(1), . . . , u(k). We further expand nk

with respect to µ, e.g., n1(x;µ) = L̂0x + µL̂1x + . . . , and obtain

f (x; ε2) = L̂0x + µL̂1x + M0xx + N0xxx + O(|x|4) , (A.2.3)



76 B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105

where M0uv = n2(u, v;µ = 0) and N0uvw = n3(u, v,w;µ = 0). We thus discard all O(µ) terms in n2 and n3 in (A.2.3).
Furthermore, we Taylor-expand g as

g(x, x′) = G0 + G10x + G01x′
+ G20x2 + G11xx′

+ G02x′2
+ · · · . (A.2.4)

If the system undergoes a supercritical Hopf bifurcation at µ = 0 (and κ = 0), the operator L̂0 has a set of eigenvalues
σ (L̂0) = {λα | α = 1, . . . , n}, each of which can be expanded as λα = λα0 + µλα1 + . . . . The Hopf bifurcation condition
requires that λ10 = −λ20 = iω0 are purely imaginary and that Re(λα0 ) > 0 for all α > 2. For convenience, we set u = u1 as
the right eigenvector of L̂0 corresponding to the eigenvalue λ10 = λ0, that is

L̂0u = λ0u and L̂0ū = λ̄0ū

where λ20 = λ̄0. Likewise, we denote by v = v1 the left eigenvector of L̂0 corresponding to the eigenvalue λ10 = λ0:
vL̂0 = λ0v. The left and right eigenvectors fulfill vū = v̄u = 0. Next, we normalize them such that vu = v̄ū = 1. In
particular, we have

λ0 = σ0 + iω0 = vL̂0u

λ1 = σ1 + iω1 = vL̂1u .

With this, the solution to the linearized unperturbed system, ẋ = L̂0x, is given by

x0(t) = weiω0tu + w̄e−iω0t ū , (A.2.5)

where w is an arbitrary complex number, which we will refer to as the complex amplitude. For the full dynamics (A.2.1)
including the perturbations, x(t) generally deviates from x0(t). To describe the asymptotic evolution of x(t), we consider
the complex amplitude w to be time dependent. In the following, we will derive the dynamics of w in the form

ẇ = f (w, w̄) + ε2κg(w, w̄,w′, w̄′) , (A.2.6)

where the prime (′) indicates the coupled oscillator.
We define ε =

√
|µ| and χ = sgn µ and consider x = x1 + x2 + . . . where xl = O(εl). When abbreviating n1(x) = Lx,

we have L = L̂0 + χε2L̂1 + O(ε4). We further introduce a scaled time τ = ε2t such that x = x(t, τ ) depends both on t
and τ , which should be treated as mutually independent. Then, the time derivative becomes

d
dt

→
∂

∂t
+ ε2

∂

∂τ
.

Taken together, (A.2.3) reads(
∂

∂t
+ ε2

∂

∂τ
− L̂0 − ε2χ L̂1 − · · ·

)
(x1 + x2 + · · ·) =

M0x1x1 + (2M0x1x2 + N0x1x1x1)+ O(ε4)

+ κ
[
G0 + ε

(
G10x1 + G01x′

1

)
+ ε2

(
G20x1x1 + G11x1x′

1 + G02x′

1x
′

1

)
+ O(ε3)

]
.

(A.2.7)

For merely weak coupling, that is, 0 < κ ≪ µ ≪ 1, it is appropriate to assume κ ↦→ ε2κ . The right-hand side of (A.2.7)
becomes

(M0x1x1 + κG0)+
(
2M0x1x2 + N0x1x1x1 + ε2κ

[
G10x1 + G01x′

1
])

+ O(ε4) . (A.2.8)

The term in the first parentheses is of order O(ε2) and the term in the second of order O(ε3). For this particular choice of
coupling parameter η = ε2κ , the coupling function reduces to at most linear coupling terms. If, e.g., η = O(ε), then also
quadratic terms have to be taken into account. Here, however, we constrain ourselves to linear coupling. Comparing the
coefficients of different powers of ε in (A.2.7), we get a set of equations of the form(

∂

∂t
− L̂0

)
xν = Bν , ν = 1, 2, . . . , (A.2.9)

where Bν = O(εν) and the first Bν ’s are given by

B1 = 0 ,

B2 = M0x1x1 + ε2κG0 ,

B3 = −

(
ε2
∂

∂τ
− ε2χ L̂1

)
x1 + 2M0x1x2 + N0x1x1x1 + ε2κ

[
G10x1 + G01x′

1

]
.

(A.2.10)

In general, the Bν ’s are depending on xν′ with ν ′ < ν. Therefore, one can solve the system (A.2.9) of linear inhomogeneous
differential equations subsequently. Computation can be simplified by using the following solvability condition.
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Lemma A.1. The solvability condition for system (A.2.9) reads

vB(1)
ν (τ ) = 0 , (A.2.11)

where B(1)
ν is the first Fourier coefficient of the expansion

Bν(t, τ ) =

∞∑
l=−∞

B(l)
ν (τ )eilω0t . (A.2.12)

Proof. First of all, we use the fact that∫ 2π/ω0

0
vBνe−iω0t dt =

∫ 2π/ω0

0
v⊺

· Bνe−iω0t dt = 0 , (A.2.13)

which we prove via∫ 2π/ω0

0
v⊺

· Bνe−iω0t dt
(A.2.9)
=

∫ 2π/ω0

0

[
v⊺

·

(
∂

∂t
− L̂0

)
xν
]
e−iω0t dt (note that λ0 = iω0)

=

∫ 2π/ω0

0

[
v (λ0xν)−

(
vL̂0

)
xν
]
e−iω0t dt = 0 ,

where the second equality is due to partial integration and the last due to v being the left eigenvector of L̂0 corresponding
to the eigenvalue λ0.

Having a closer look at system (A.2.9), the homogeneous part suggests that the xν ’s are 2π-periodic functions of ω0t .
Hence, also Bν = Bν(t, τ ) has to be 2π-periodic, which admits the Fourier expansion (A.2.12). Substituting the latter into
(A.2.13), we have∫ 2π/ω0

0
vBνe−iω0t dt =

∞∑
l=−∞

∫ 2π/ω0

0
vB(l)

ν (τ )ei(l−1)ω0t dt = 0 .

Evaluating all the integrals on the right-hand side, we see that all but the one where l = 1 vanish, which leaves the
solvability condition (A.2.11). □

Now, one can solve system (A.2.9) iteratively. For ν = 1, we have(
∂

∂t
− L̂0

)
x1 = 0 ,

which provides the ‘‘neutral solution’’

x1(t, τ ) = w(τ )ueiω0t + c.c. (A.2.14)

where w(τ ) is the complex amplitude and c.c. stands for the complex conjugate of the foregoing part. In particular, we
have |w(τ )| = O(ε). As to ν = 2, we would like to mention first that since x1 ∝ eiω0t , the term M0x1x1 ∝ e2iω0t . Due
to the solvability condition (A.2.13), we know that (i) B2 has to be periodic and that (ii) the constant coupling term G0
has to vanish as it will be averaged out. In the case that the coupling function g in (A.2.1) is explicitly time-dependent,
in particular, all terms Gjk in (A.2.4) have to be time-dependent, we can likewise Fourier expand G0 and see that the first
two coefficients G(0)

0 = G(1)
0 = 0 have to vanish. One can argue in the same manner that all even Fourier coefficients

G(2n)
jk , n = 0, 1, 2, . . . , of any coupling term Gjk, j, k ∈ N, must be zero. In any case, B2 only contains zeroth and ≥ 2nd

harmonics, and the same holds for x2(t, τ ). Hence, we can write

x2(t, τ ) = V+w(τ )2e2iω0t + V−w̄(τ )2e−2iω0t + V 0|w(τ )|2 + h.h. (A.2.15)

where h.h. stands for higher harmonics that will not be further discussed. Substituting x2 into (A.2.9) and comparing
coefficients of different harmonics, we can solve the equation for the constants V±,0. We find

V+ = V− = −

(
L̂0 − 2iω0

)−1
M0uu and V 0 = −2L̂

−1
0 M0uū . (A.2.16)

For ν = 3, we first substitute in x1 and x2 into B3 as given in (A.2.10), and subsequently solve for the first Fourier coefficient

B(1)
3 (τ ) = −

(
ε2
∂

∂τ
− ε2χ L̂1

)
w(τ )u +

(
2M0uV 0 + 2M0ūV+ + 3N0uuū

)
|w(τ )|2w(τ )

+ ε2κ

(
G10uw(τ ) + G01uw′(τ )

)
,

(A.2.17)
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where we assumed no explicit dependence of g on time. Using the solvability condition (A.2.11), i.e., vB(1)
3 = 0, and that

vwu = w, we finally arrive at the amplitude equation

ẇ = αw − β|w|
2w + ε2κ

(
γ1w + γ2w

′
)

(A.2.18)

with complex constants

α = vε2χ L̂1u,
β = − (2vM0uV 0 + 2vM0ūV+ + 3vN0uuū) ,
γ1 = vG10u,
γ2 = vG01u .

(A.2.19)

Returning to the original notation with the nk and noting that the latter are linear in each of their arguments, we have

β = −2vn3

(
u, u, ū

)
+ 4vn2

(
ū, L̂

−1
0 n2 (u, ū)

)
+ 2vn2

(
u,
(
L̂0 − 2iω0

)−1
n2 (u, u)

)
. (A.2.20)

As a final remark about the dot-notation in the amplitude equation (A.2.18), we replaced ε2∂/∂τ by ∂/∂t , such that the
derivative is now taken with respect to the original time t , although w = w(ε2t) changes only slowly.

For the initial dynamics (A.2.1), we seek for the phase dynamics of the perturbed solution x(t) from the linearized
solution x0(t). We can write x(t) as

x(t) = w(t)eiω0tu + w̄(t)e−iω0t ū + h.h. (A.2.21)

Differentiating with respect to time t and inserting (A.2.18) gives ẋ(t) = Weiω0tu + c.c. + h.h., where W = ẇ + iω0w
describes the full amplitude dynamics

ẇ = (α + iω0)w − β|w|
2w + ε2κ(γ1w + γ2w

′) (A.2.22)

on the slower time scale, where the natural frequency ω0 is added to the dynamics of mere amplitude deviations (A.2.18).
Following the theory of weakly coupled oscillators, the crucial assumption for the coupling constant is that

η = ε2κ with 0 < κ < ε ≪ 1 . (A.2.23)

This allows the linear coupling term to be correct of order O(ε). Higher-order corrections of the coupling term up to
order O(ε3) have been presented by Kori and co-workers [177] and we will elaborate on them further in Appendix A.2.2.
If we drop the assumption (A.2.23), we may consider nonlinear coupling terms in the phase-space dynamics (A.2.1).
Furthermore, the inhomogeneities Bν in the reduced system (A.2.9) take more intricate forms and the derivation leading
to the amplitude equation (A.2.18) has to be revised accordingly.

Remark. The here presented Reductive Perturbation Method as one possible phase reduction technique has been
established by Kuramoto [12]. Another technique closely linked is the so-called Renormalization Group Method of
Goldenfeld, Oono and co-coworkers [311,312]. Kunihiro demonstrated the intricate link between the two methods [313]:
Kuramoto’s solvability condition (A.2.11) can be circumvented by introducing an appropriately chosen constant δ such
that unwanted secular terms vanish.

A.2.2. Higher-order corrections and nonlinear coupling
We here follow the theory established in the preceding section. Not only do we want to establish higher-order

corrections of the coupling term up to order O(ε3) as presented by Kori and co-workers [177], but also we refrain from the
direct, linear coupling. Note that the results (A.2.19) for the parameters α, β, γ1,2 remain the same for nonlinear coupling.
Yet, if we allow for higher-order corrections in the amplitude equation (A.2.18), that is, in

ẇ = αw − β|w|
2w + ε2κ(γw′

+ δw̄w′2) , (A.2.24)

the additional parameter δ will incorporate the nonlinear effects of the underlying coupling nonlinearity in the original
dynamics.

Therefore, in the notation of the preceding section we consider the coupling function

g(x, x′) = G10x + G01x′
+ G20(x) + G11(x, x′) + G02(x′)

+ G30(x) + G21(x, x′) + G12(x, x′) + G03(x′) + · · · ,
(A.2.25)

where the functions

Gjk(x, x′) = Gjk(x, . . . , x  
j times

, x′, . . . , x′  
k times

) (A.2.26)

are of order Gjk = O(εj+k) for x, x′
= O(ε). For instance, we are interested in the effect of nonlinear coupling terms

xx′, yx′, x2x′, xyx′, y2x′ when x = (x, y), x′
= (x′, y′) are two-dimensional. Possible examples for Gjk are G11(x, x′) =
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a · xx′
+ b · yx′ or G21(x, x′) = c · x2x′

+ d · xyx′
+ e · y2x′ with parameters a, . . . , e. More general, if we write all possible

products of (x, y), (x′, y′) of order j + k as a vector

(x, y)j ∗ (x′, y′)k :=

(
xjx′k, xj−1yx′k, . . . , yjx′k, xjx′k−1y′, . . . , . . . , yjy′k

xjx′k, xj−1yx′k, . . . , yjx′k, xjx′k−1y′, . . . , . . . , yjy′k

)⊺

,

we can rewrite the coupling terms Gjk as

Gjk
(
(x, y), (x′, y′)

)
= G jk

[
(x, y)j ∗ (x′, y′)k

]
(A.2.27)

with G jk a 2 × (j + 1)(k + 1)-matrix. In particular, G10 and G01 are quadratic, 2 × 2-matrices.
As before, we denote by x0(t) the solution to the linearized unperturbed system ẋ = L̂0x. The general solution, though,

will be of the form

x = x0(w, w̄, θ ) + ρ(w, w̄,w′, w̄′, θ ) ∈ Rn , (A.2.28)

with w ∈ C following the dynamics (A.2.6). For convenience, we rewrite the dynamics as

ẋ = L̂0x + ε2L̂1x + n2(x, x) + n3(x, x, x) + ε2κ g(x, x′) , (A.2.29)

ẇ = W(w, w̄,w′, w̄′) . (A.2.30)

The functions W and ρ have to be determined perturbatively, as outlined in the preceding section. Note also that W is
free from θ = θ (t). If we insert the ansatz (A.2.28) into (A.2.29) and use (A.2.30), we find

L0ρ = W exp(iθ )u + W̄ exp(−iθ )ū + b(w, w̄,w′, w̄′, θ ) , (A.2.31)

with the operator L0 =

(
L̂0 − ω0

∂
∂θ

)
, the right eigenvector u of L̂0 corresponding to the eigenvalue iω0, and where

b = −ε2L̂1x − n2(x, x) − n3(x, x, x) − ε2κ G(x, x′) + W
∂ρ

∂w
+ W̄

∂ρ

∂w̄
+ W ′

∂ρ

∂w′
+ W̄ ′

∂ρ

∂w̄′
. (A.2.32)

Regarding (A.2.31) formally as an inhomogeneous linear differential equation for ρ(θ ) where the right-hand side is the
inhomogeneous part, we solve it by first expanding ρ(θ ) and b(θ ) as

ρ(θ ) =

∞∑
l=−∞

ρ(l) exp(ilθ ) , b(θ ) =

∞∑
l=−∞

b(l) exp(ilθ ) . (A.2.33)

Then, we use that exp(iθ )u and its complex conjugate are by construction the zero eigenvectors of the operator L0,
i.e. L0(exp(iθ )u) = L0(exp(−iθ )ū) = 0. Since the left-hand side of (A.2.31) does not contain any of these zero-eigenvector
components due to the action of L0, we require that these components are canceled also on the right-hand side — this is
the solvability condition corresponding to (A.2.11) in the preceding section. Inserting the expansions (A.2.33) into (A.2.31)
and comparing the first coefficients in the basis {exp(ilθ ) | l ∈ Z}, the solvability condition reads

W = −vb(1) , (A.2.34)

where v is the left eigenvector of L̂0 corresponding to the eigenvector iω0. For completeness, we find for the other
coefficients

ρ(l)
=

(
L̂0 − ilω0

)−1
b(l) , (l ̸= ±1) , (A.2.35)

ρ(1)
=

(
L̂0 − iω0

)−1 (
b(1)

+ Wu
)
, (A.2.36)

ρ(−1)
=

(
L̂0 + iω0

)−1 (
b(−1)

+ W̄ū
)
. (A.2.37)

Furthermore, we expand ρ(l) and b(l) in powers of ε:

ρ(l)
=

∞∑
ν=2

εν ρ̃(l)
ν =

∞∑
ν=2

ρ(l)
ν , b(l)

=

∞∑
ν=2

εν b̃
(l)
ν =

∞∑
ν=2

b(l)
ν . (A.2.38)

Correspondingly, we have

ρ =

∞∑
ν=2

εν ρ̃ν =

∞∑
ν=2

ρν , b =

∞∑
ν=2

εν b̃ν =

∞∑
ν=2

bν . (A.2.39)

In a similar way, we expand W . Since we are close to a Hopf bifurcation, the only resonant terms in w, w̄ are of the form
|w|

nw with n = 0, 1, 2, . . . ; see Section 6.3.3 in the main text and [75,82]. Since w,w′
= O(ε) and based on our previous
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reasoning, the only mixed terms with non-negligible effect on the amplitude dynamics (A.2.6) are of odd powers in ε.
This justifies an expansion of the form

W =

∞∑
ν=1

ε2ν+1W̃2ν+1 =

∞∑
ν=1

W2ν+1 . (A.2.40)

Taken together, we have Wν = O(εν) (ν ≥ 3), bν, ρν = O(εν) (ν ≥ 2), and x0 = O(ε). Next, to calculate Wν , we need
expressions for bµ with 1 ≤ µ ≤ ν. After substituting all the expansions above into (A.2.32), we can compare terms of
same order in ε. By respecting the symmetry of the nk in their arguments, we find

b2 = −n2(x0, x0) , (A.2.41)

b3 = −ε2L̂1x0 − 2n2(x0, ρ2) − n3(x0, x0, x0) − κε2
(
G10x0 + G01x′

0

)
, (A.2.42)

b4 = −ε2L̂1ρ2 − 2n2(x0, ρ3) − n2(ρ2, ρ2) − 3n3(x0, x0, ρ2)

− κε2
[
G10ρ2 + G01ρ

′

2 + G20(x0, x0) + G11(x0, x′

0) + G02(x′

0, x
′

0)
]
, (A.2.43)

b5 = −ε2L̂1ρ3 − 2n2(x0, ρ4) − 2n2(ρ2, ρ3) − 3n3(x0, x0, ρ3) − 3n3(x0, ρ2, ρ2)

+ W3
∂ρ2

∂w
+ W̄3

∂ρ2

∂w̄
+ W ′

3
∂ρ2

∂w′
+ W̄ ′

3
∂ρ2

∂w̄′

− κε2
[
G10ρ3 + G01ρ

′

3 + 2G20(x0, ρ2) + G11(x0, ρ′

2) + G11(ρ2, x
′

0) + 2G02(x′

0, ρ
′

2)
]

− κε2
[
G30(x0, x0, x0) + G21(x0, x0, x′

0) + G12(x0, x′

0, x
′

0) + G03(x′

0, x
′

0, x
′

0)
]
. (A.2.44)

Using the solvability condition (A.2.34), we can calculate W3 = −vb(1)
3 via

b(1)
3 = −ε2L̂1x

(1)
0 − 2n2(x0, ρ2)

(1)
− n3(x0, x0, x0)(1) − κε2

(
G10x

(1)
0 + G01x

′(1)
0

)
(A.2.45)

= −ε2L̂1x
(1)
0 − 2n2(x

(1)
0 , ρ

(0)
2 ) − 2n2(x

(−1)
0 , ρ

(2)
2 ) − n3(x

(1)
0 , x

(1)
0 , x

(−1)
0 ) − κε2

(
G10x

(1)
0 + G01x

′(1)
0

)
.

Combining (A.2.35) and (A.2.41) results in

ρ
(0)
2 = L̂

−1
0 b(0)

2 = −2L̂
−1
0 n2

(
x(1)0 , x

(−1)
0

)
, (A.2.46)

ρ
(2)
2 =

(
L̂0 − 2iω0

)−1
b(2)
2 =

(
L̂0 − 2iω0

)−1
n2

(
x(1)0 , x

(1)
0

)
. (A.2.47)

Finally, noting that x(1)0 = wu and x(−1)
0 = wū, we retrieve from (A.2.46)

W3 = ε2α − β|w|
2w + ε2κ

[
γ10w + γ01w

′
]

(A.2.48)

with

α = vL̂1u , (A.2.49)

β = −3vn3 (u, u, ū)+ 4vn
(
u, L̂

−1
0 n2(u, ū)

)
+ 2vn2

(
ū, (L̂0 − 2iω0)−1n2(u, u)

)
, (A.2.50)

γ10 = vG10u , γ01 = vG01u . (A.2.51)

Analogously, we determine W5 = −vb(1)
5 :

b(1)
5 = −ε2L̂1ρ

(1)
3 − 2n2(x0, ρ4)

(1)
− 2n2(ρ2, ρ3)

(1)
− 3n3(x0, x0, ρ3)

(1)
− 3n3(x0, ρ2, ρ2)

(1)

+ W3
∂ρ

(1)
2

∂w
+ W̄3

∂ρ
(1)
2

∂w̄
+ W ′

3
∂ρ

(1)
2

∂w′
+ W̄ ′

3
∂ρ

(1)
2

∂w̄′
− κε2

[
G10ρ

(1)
3 + G01ρ

′(1)
3

]
− κε2

[
2G20(x0, ρ2)

(1)
+ G11(x0, ρ′

2)
(1)

+ G11(ρ2, x
′

0)
(1)

+ 2G02(x′

0, ρ
′

2)
(1)
]

− κε2
[
G30(x0, x0, x0)(1) + G21(x0, x0, x′

0)
(1)

+ G12(x0, x′

0, x
′

0)
(1)

+ G03(x′

0, x
′

0, x
′

0)
(1)
]

(A.2.52)

Again, we have to expand the terms, which we show here for only the first line of (A.2.52) since the other terms follow
equivalently,

n2(x0, ρ4)
(1)

= n2(x
(1)
0 , ρ

(0)
4 ) + n2(x

(−1)
0 , ρ

(2)
4 ) ,

n2(ρ2, ρ3)
(1)

= n2(ρ
(2)
2 , ρ

(−1)
3 ) + n2(ρ

(1)
2 , ρ

(0)
3 ) + n2(ρ

(0)
2 , ρ

(1)
3 ) + n2(ρ

(−1)
2 , ρ

(2)
3 ) + n2(ρ

(−2)
2 , ρ

(3)
3 )

n3(x0, x0, ρ3)
(1)

= n3(x
(1)
0 , x

(1)
0 , ρ

(−1)
3 ) + 2n3(x

(1)
0 , x

(−1)
0 , ρ

(1)
3 ) + n3(x

(−1)
0 , x(−1)

0 , ρ
(3)
3 ) ,
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n3(x0, ρ2, ρ2)
(1)

= 2n3(x
(1)
0 , ρ

(2)
2 , ρ

(−2)
2 ) + 2n3(x

(1)
0 , ρ

(1)
2 , ρ

(−1)
2 ) + 2n3(x

(1)
0 , ρ

(0)
2 , ρ

(0)
2 )

+ 2n3(x
(−1)
0 , ρ

(2)
2 , ρ

(0)
2 ) + n3(x

(−1)
0 , ρ

(1)
2 , ρ

(1)
2 ) .

We focus on those terms that contribute to κε2w̄w′2. Following Kori et al. [177], one can exclude all terms that (a) include
ρ2, (b) include x(1)0 , and (c) include x(−1)

0 twice. The remaining terms, hence, read

−ε2L̂1ρ
(1)
3 − 2n2

(
x(−1)
0 , ρ

(2)
4

)
−κε2

[
G10ρ

(1)
3 + G01ρ

′(1)
3 + G11

(
x(−1)
0 , ρ′(2)

2

)
+ G12

(
x(−1)
0 , x′(1)

0 , x
′(1)
0

)]
.

(A.2.53)

The first term can be neglected because the coupling term included there is linear. Further, the first two terms in brackets
can also be neglected because each of them yields exclusively either w, w̄ or w′, w̄′. Hence, the only remaining terms in
b(1)
5 are the two between the brackets and the κ-dependent term in

− n2

(
x(−1)
0 , ρ

(2)
4

)
. (A.2.54)

As for the latter, according to (A.2.35) and (A.2.43) the κ-dependent terms in ρ
(2)
4 are(

L̂0 − 2iω0

)−1 (
−κε2

[
G10ρ

(2)
2 + G01ρ

′(2)
2 + G20(x

(1)
0 , x

(1)
0 ) + G11(x

(1)
0 , x

′(1)
0 ) + G02(x′(1)

0 , x
′(1)
0 )
])
. (A.2.55)

Following the same reasoning as above, all but the second and the last terms in brackets can be ignored. Using (A.2.41),
we have

ρ′(2)
2 =

(
L̂0 − 2iω0

)−1 (
−n2

(
x′(1)

0 , x
′(1)
0

))
= −w′2

(
L̂0 − 2iω0

)−1
n2(u, u) . (A.2.56)

Hence, (A.2.54) reduces to the κ-dependent terms

− 2κε2w̄w′2n2

(
ū,
(
L̂0 − 2iω0

)−1 [
G01

(
L̂0 − 2iω0

)−1
n2(u, u) − G02(u, u)

])
. (A.2.57)

In addition, we find

+ κε2w̄w′2
[
G11

(
ū,
(
L̂0 − 2iω0

)−1
n2(u, u)

)
− G12(ū, u, u)

]
. (A.2.58)

Combining (A.2.57) and (A.2.58), we find the following expression for δ in (A.2.24):

δ = 2vn2

(
ū,
(
L̂0 − 2iω0

)−1 [
G01

(
L̂0 − 2iω0

)−1
n2(u, u) − G02(u, u)

])
−vG11

(
ū,
(
L̂0 − 2iω0

)−1
n2(u, u)

)
+ vG12(ū, u, u) .

(A.2.59)

Note that for linear coupling, all Gjk vanish but G01, confirming the results by Kori et al. [177].

A.3. Poincaré’s reduction via nonlinear transforms

We consider two weakly coupled two-dimensional oscillators x = (x, y), x′
= (x′, y′) ∈ R2 near a supercritical Hopf

bifurcation, whose general dynamics is given by

ẋ = f (x, t;µ) + κ g(x, x′, t;µ) (A.3.1)

and which we seek to transform into a generic normal form

ẇ = αw − β|w|
2w + κ h(w,w′) , (A.3.2)

where the complex parameters α = α(µ), β = β(µ) and the coupling function45 h have to be determined subsequently.
For the sake of legibility, we drop the explicit time-dependence of f and g , and note that the theory also holds when
allowing for time variations.

By definition and without loss of generality, the dynamics of an uncoupled unit

ẋ = f (x;µ) (A.3.3)

has for all sufficiently small |µ| ≪ 1 the equilibrium (0, 0) with eigenvalues

λ1,2(µ) = ϱ(µ) ± iω(µ) , (A.3.4)

45 In this section we denote the coupling function of the resulting Hopf normal form by h and thereby deviate from the general notation g .
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where ϱ(0) = 0 and ω(0) = ω0 > 0. The first Lyapunov coefficient l1(0) = −Re β(0)/ω(0), which depends on the
properties of the function f , does not vanish and ϱ′(0) ̸= 0. In particular, we can rewrite (A.3.3) as

d
dt

(
x
y

)
= L(µ)

(
x
y

)
+ F

((
x
y

)
;µ

)
with L(µ) =

(
a11(µ) a12(µ)
a21(µ) a22(µ)

)
, (A.3.5)

where we further set σ (µ) = tr L(µ) and ∆(µ) = det L(µ), such that

λ1,2(µ) =
1
2

[
σ (µ) ±

√
σ (µ)2 − 4∆(µ)

]
. (A.3.6)

The Hopf bifurcation assumption translates into σ (0) = 0 and ∆(0) = ω2
0 > 0. For small |µ|, one can introduce

ϱ(µ) =
1
2σ (µ), ω(µ) =

1
2

√
4∆(µ) − σ (µ)2 (A.3.7)

and set λ1 = λ, λ2 = λ̄. As can already be anticipated, the parameter α in (A.3.2) is exactly the eigenvalue λ.
Next,we couple the unit x = (x, y) to another identical one, x′

= (x′, y′), that is, f = f ′, via the coupling function g(x, x′)
and with coupling strength κ ∈ R. In general, g depends on both the control parameter µ and the coupling strength κ .
Since |κ| ≪ 1 is sufficiently small, we can assume that the coupling function depends on κ only up to first order. The
system of interest reads

ẋ = f (x;µ) + κ g̃(x, x′
;µ) + O(κ2) , (A.3.8)

where g̃ = g + O(κ). In the following we omit the tilde. While common normal form transforms merely consider single
units, the following lemmata along the line of Chapter 3, Lemmata 3.3− 3.6, in [82] are adapted to take the full, coupled
system (A.3.8) into account. By subsequently applying the theory outlined in this section, we can derive the transformed
equations in Hopf normal form and thereby allow for a reduction of the dynamics onto the center manifold where we
provide also the exact transformations of the nonlinear terms in the coupling function g . To start with, we first rewrite
the dynamics in complex form.

Lemma A.2. By introducing a complex variable z ∈ C, system (A.3.8) can be written for sufficiently small |µ| as a single
equation:

ż = λ(µ)z + f̃ (z, z̄;µ) + κ g̃(z, z̄, z ′, z̄ ′
;µ) + O(κ2) , (A.3.9)

where f̃ , g̃ = O(|z|2) are smooth functions of (z, z̄;µ), and (z, z̄, z ′, z̄ ′
;µ), respectively. Note that z refers to unit x and z ′

represents x′.

Proof. As we assume x and x′ being identical in the uncoupled case, κ = 0, the following reasoning applies to
both x and x′. Let u(µ) = (u1(µ), u2(µ))⊺ ∈ C2 be a right eigenvector of L(µ) corresponding to the eigenvalue λ(µ):
L(µ)u(µ) = λ(µ)u(µ), and let v(µ) = (v1(µ), v2(µ)) ∈ C1×2 be the corresponding left eigenvector: v(µ)L(µ) = λ(µ)v(µ).
We assume u, v are normalized such that v(µ)u(µ) = v1(µ)u1(µ)+ v2(µ)u2(µ) = 1. Every vector x ∈ R2 can be uniquely
represented for any small |µ| as

x = zu(µ) + z̄ū(µ) (A.3.10)

for some complex z and provided the eigenvectors are specified. Then, z = v(µ)x. A rigorous justification can be found
in [Lemma 3.3,82]. By vector calculus we find that

ż = v(µ)ẋ = v(µ)
[
L(µ)x + F (x;µ) + κg(x, x′

;µ) + O(κ2)
]

= v(µ)L(µ)x + v(µ)F (zu(µ) + z̄ū(µ);µ)+ κ v(µ)g
(
zu(µ) + z̄ū(µ), z ′u(µ) + z̄ ′ū(µ);µ

)
+ O(κ2)

= λ(µ)z + f̃ (z, z̄;µ) + κ g̃(z, z̄, z ′, z̄ ′
;µ) + O(κ2) , (A.3.11)

where F denotes the nonlinear part of the function f (x;µ) = L(µ)x + F (x;µ). □

One can write f̃ as a formal Taylor series in the two complex variables z and z̄:

f̃ (z, z̄;µ) =

∑
k+l≥2

1
k!l!

fkl(µ)zkz̄ l , (A.3.12)

where

fkl(µ) =
∂k+l

(∂z)k(∂ z̄)l
v(µ)f (zu(µ) + z̄ū(µ);µ)

⏐⏐⏐⏐
z=0

for k + l ≥ 2, k, l = 0, 1, . . . .
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Remark. Suppose at µ = 0 the function f (x, 0) in (A.3.8) is represented as

f (x, 0) =
1
2B(x, x) +

1
6
C (x, x, x) + O(∥x∥4) ,

where B(p, q) and C (p, q, r) are symmetric multilinear vector functions of p, q, r ∈ R2. In coordinates, we have

Bi(p, q) =

2∑
j,k=1

∂2fi(ξ, 0)
∂ξj∂ξk

⏐⏐⏐⏐
ξ=0

pjqk , i = 1, 2,

and

C i(p, q, r) =

2∑
j,k,l=1

∂3fi(ξ, 0)
∂ξj∂ξk∂ξl

⏐⏐⏐⏐
ξ=0

pjqkrl , i = 1, 2 .

Then,

B(zu + z̄ū, zu + z̄ū) = z2B(u, u) + 2zz̄B(u, ū) + z̄2B(ū, ū) , (A.3.13)

where u = u(0), v = v(0). Hence, the Taylor coefficients fkl of the quadratic terms in f̃ (z, z̄, 0), i.e. k + l = 2, can be
expressed by

f20 = vB(u, u), f11 = vB(u, ū), f02 = vB(ū, ū) . (A.3.14)

Similar calculations with C give

f21 = vC (u, u, ū) . (A.3.15)

The following two lemmata are key to transform system (A.3.8) into Hopf normal form. In fact, both are polynomial
coordinate transformations whose coefficients depend smoothly on µ. The proofs of the respective lemma use their inverse
transformations, which are again smoothly dependent on µ but not necessarily polynomial. However, we will not provide
the proofs here but refer to [Chapter 3.5, 82]. In some neighborhood of the origin x = (0, 0), these transformations are
near-identical due to their linear parts.

Lemma A.3 (Lemma 3.4 [82]). The equation

ż = λz +
f20
2

z2 + f11zz̄ +
f02
2

z̄2 + O(|z|3) , (A.3.16)

where λ = λ(µ) = ϱ(µ) + iω(µ), ϱ(0) = 0, ω(0) = ω0 > 0, and fkl = fkl(µ), can be transformed by an invertible
parameter-dependent change of complex coordinate

z = w +
h20

2
w2

+ h11ww̄ +
h02

2
w̄2

for all sufficiently small |µ|, into an equation without quadratic terms:

ẇ = λw + O(|w|
3).

Lemma A.4 (Lemma 3.5 [82]). The equation

ż = λz +
f30
6

z3 +
f21
2

z2z̄ +
f12
2

zz̄2 +
f03
6

z̄3 + O(|z|4) , (A.3.17)

where λ = λ(µ) = ϱ(µ) + iω(µ), ϱ(0) = 0, ω(0) = ω0 > 0, and fkl = fkl(µ), can be transformed by an invertible
parameter-dependent change of complex coordinate

z = w +
h30

6
w3

+
h21

2
w2w̄ +

h12

2
ww̄2

+
h03

6
w̄6

for all sufficiently small |µ|, into an equation with only one cubic term:

ẇ = λw + c1w2w̄ + O(|w|
4),

where c1 = c1(µ) = f21/2.

Combining these two lemmata yields the Poincaré normal form for the Hopf bifurcation, cf. [Lemma 3.6,82].

Lemma A.5. The equation

ż = λz +

∑
2≤k+l≤3

1
k!l!

fklzkz̄ l + κ g̃(z, z̄, z ′, z̄ ′
;µ) + O(|Z |

4, κ2) , (A.3.18)
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with Z = (z, z ′), and where λ = λ(µ) = ϱ(µ) + iω(µ), ϱ(0) = 0, ω(0) = ω0 > 0, and fkl = fkl(µ), and where ˜̃g denotes g̃
truncated after cubic terms, can be transformed by an invertible parameter-dependent change of complex coordinate, smoothly
depending on the parameter,

z = ψ(w) = w +
h20

2
w2

+ h11ww̄ +
h02

2
w̄2

+
h30

6
w3

+
h12

2
ww̄2

+
h03

6
w̄3 , (A.3.19)

for all sufficiently small |µ|, into an equation with only one cubic term:

ẇ = λw − βw2w̄ + κ h(w, w̄,w′, w̄′) + O(|W |
4, κ2), (A.3.20)

with W = (w,w′), and where β = β(µ) = −c1(µ) is given by

c1 =
f20f11(2λ+ λ̄)

2|λ|2
+

|f11|2

λ
+

|f02|2

2(2λ− λ̄)
+

f21
2
, (A.3.21)

and h has only polynomial components of degree lower than or equal to 3, i.e. h is of the form

h(w, w̄,w′, w̄′) =

∑
0≤k+l+m+n≤3

hklmnw
kw̄lw′mw̄′n , (A.3.22)

where for k + l + m + n = 0 we have hklmn = g̃klmn with the latter being the Taylor coefficients of g̃ , and if g̃ has no constant
term, i.e. g̃0000 = 0, then hklmn = g̃klmn holds also for k + l + m + n = 1.

Proof. The first part of the proof is a combination of the previous two lemmata. We apply the first lemma to (A.3.18)
in order to remove the quadratic terms. Then, we can apply the second lemma and arrive at the amplitude equation as
wanted. Note that by the first transformation the coefficients of the cubic and higher order terms may have changed.
Therefore, the coefficients of the inverse transforms as given in the proofs for the two lemmata as in [82] are no longer
valid in our scenario. Once the two subsequent near-identity transforms have been established, we can also apply them
to the coupling term. Indeed, the near-identity character leaves the linear terms unchanged such that hklmn = gklmn at
order O(|Z |, |W |).

The idea of finding the coefficients in (A.3.20) breaks down to identifying the coefficients ajk of a local inverse transform
up to order O(|w|

4):

w = ψ−1(z) = z + a20z2 + a11zz̄ + z02z̄2 + a30z3 + a21z2z̄ + a12zz̄2 + a03z̄3 + · · · . (A.3.23)

Inserting the forward transform (A.3.19) into (A.3.23) and evaluating the right- and left-hand sides coefficient-wise,
provides the inverse coefficients ajk:

a20 = −
h20

2
, a11 = −h11, a02 = −

h02

2
,

a30 = −
h30

6
+

h2
20

2
+

h11h̄02

2
,

a21 =
3h20h11

2
+ |h11|

2
+

|h02|
2

2
,

a12 = −
h12

2
+

h20h02

2
+ h2

11 +
h11h̄20

2
+

h̄11h02

2
,

a03 = −
h03

6
+

h11h02

2
+

h̄20h20

2
.

By differentiating the inverse transform (A.3.23) with respect to t and by using the abbreviations f (z) =
∑

k,l 1/(k!l!)fklz
kz̄ l,

g(z, z ′) = g̃(z, z̄, z ′, z̄ ′), and f (w) = f (ψ(w)), g(w,w′) = g
(
ψ(w), ψ(w′)

)
, we have

ẇ =
d
dtψ

−1(z) = ż + 2a20zż + a11żz̄ + a11z ˙̄z + · · ·

= λz + f (z) + κg(z, z ′) + 2a20
[
λz2 + f (z)z + κg(z, z ′)z

]
+ a11

[
(λ+ λ̄)zz̄ + f (z)z + f (z)z̄ + κ(g(z, z ′)z + g(z, z ′)z̄)

]
+ · · ·

= λψ(w) + f (w) + 2a20
[
λψ(w)2 + f (w)ψ(w)

]
+ a11

[
(λ+ λ̄)ψ(w)ψ(w̄) + f (w)ψ(w) + f (w)ψ(w̄)

]
+ · · ·

+ κ
[
g(w,w′) + 2a20g(w,w′)ψ(w) + a11

(
g(w,w′)ψ(w) + g(w,w′)ψ(w̄)

)
+ · · ·

]
!
= λw − βw2w̄ + κ h(w, w̄,w′, w̄′) + O(|w|

4) ,

where we inserted the dynamics (A.3.18) in the second equality and used the forward transform (A.3.19) in the third
equality. Note that we assumed that z and z ′ coincide in the uncoupled case κ = 0. That is why the coordinate transforms
z = ψ(w) and z ′

= ψ ′(w′) take the same form, that is, ψ = ψ ′. Now, by collecting terms of the same order and requiring
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that all quadratic and cubic terms except for the ww̄2-coefficient β are zero, we can solve the last equality and find
β = −c1 as (A.3.21) and the resulting coefficients hjk of the forward transform (A.3.19) as

h20 =
f20
λ
, h11 =

f11
λ̄
, h02 =

f02
2λ̄− λ

,

h30 =
f30
2λ

+
3f 220
2λ2

+
3f11 f̄02
2|λ|2

λ̄− λ

2λ− λ̄
,

h21 =
f21
2λ̄

+
f20f02

2λ̄(2λ̄− λ)
+

f 211
λ̄2

+
f11 f̄20
2λ̄3

(3λ̄− 2λ) +
f̄11f02
2|λ|2

2λ̄− 3λ
2λ̄− λ

,

h03 =
f03

3λ̄− λ
+

3f̄20f02
λ̄(3λ̄− λ)

+
3f11f02

(3λ̄− λ)(2λ̄− λ)
.

The next step is to evaluate all terms of order κ , that is, to find the hklmn’s from

h(w, w̄,w′, w̄′) = g(w,w′) + 2a20g(w,w′)ψ(w) + a11
(
g(w,w′)ψ(w) + g(w,w′)ψ(w̄)

)
+ · · · . (A.3.24)

Since ψ(w) = O(w), we have that h(w, w̄,w′, w̄′) = g(w,w′) at order O(1). Moreover, if g(0, 0) = 0, i.e. g has no constant
term, then h(w, w̄,w′, w̄′) = g(w,w′) holds up to order O(w,w′). We expand g̃ into a formal Taylor series as has been
done before for f̃ ,

g̃(z, z̄, z,′ z̄ ′
;µ) =

∑
0≤k+l+m+n

1
k!l!m!n!

g̃klmn(µ)zkz̄ lz ′mz̄ ′n . (A.3.25)

Then, g(w,w′) = g̃(ψ(w), ψ(w̄), ψ(w′), ψ(w̄′);µ) and since ψ(w) = w + O(|w|
2), we have that h0000 = g̃0000, and if

g̃0000 = 0, then

hklmn = g̃klmn for k + l + m + n = 1, k, l,m, n ≥ 0. □

Remark. The coefficient β reduces at the bifurcation parameter value µ = 0 to

β(0) =
−i
2ω0

(
f20f11 − 2|f11|2 −

1
3
|f02|2

)
−

f21
2
. (A.3.26)

Note that, together with the foregoing remark, the normal form resembles to great extent the formula derived in
Kuramoto’s reductive perturbation, see Appendix A.2.1, although the latter pursues an alternative way to arrive at the
amplitude equation.

In the following, we will briefly state the relationship between the original coupling function g(x, x′
;µ) in (A.3.8) and

the coupling coefficients hklmn of the dynamics in Hopf normal form as in Lemma A.5. Recall from Lemma A.2 that we can
write g(x, x′

;µ) in complex form as

g̃(z, z̄, z ′, z̄ ′
;µ) = v(µ)g(zv(µ) + z̄v̄(µ), z ′v(µ) + z̄ ′v̄(µ);µ) . (A.3.27)

Given a Taylor expansion of g = (g1, g2)⊺ with x = (x, y)⊺, x′
= (x′, y′)⊺,

gi(x, x′, a) =

∑
0≤k+l+m+n

1
k!l!m!n!

g (i)
klmn(a)x

kylx′my′n, for i = 1, 2 , (A.3.28)

there exists a mapping{(
g (1)
klmn, g

(2)
klmn

)}
↦→
{
g̃klmn

}
from the coupling coefficients g (i)

klmn of the original dynamics (A.3.8) to those of the complex-valued coupling function
(A.3.25). To be precise, substituting x = (zu1(µ) + z̄ū1(µ), zu2(µ) + z̄ū2(µ))⊺ and an equivalent expression for x′ into
(A.3.28), we have

g̃(z, z ′, z̄, z̄ ′
;µ) =

2∑
i=1

vi(µ)gi(zu(µ) + z̄ū(µ), z ′u(µ) + z̄ ′ū(µ);µ)

=

2∑
i=1

∑
0≤k+l+m+n

1
k!l!m!n!

vi(µ)g
(i)
klmn(µ)

{
[zu1(µ) + z̄ū1(µ)]k [zu2(µ) + z̄ū2(µ)]l

·
[
z ′u1(µ) + z̄ ′ū1(µ)

]m [z ′u2(µ) + z̄ ′ū2(µ)
]n}
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Using the binomial theorem, (a + b)n =
∑n

k=0

(n
k

)
akbn−k, we can simplify the equation to

g̃(z, z ′, z̄, z̄ ′
;µ) =

∑
0≤k+l+m+n

{ 1
k!l!m!n!

(
2∑

i=1

vi(µ)g
(i)
klmn(µ)

)
·

[ k∑
a=0

l∑
b=0

m∑
c=0

n∑
d=0

(
k
a

)(
l
b

)(
m
c

)(
n
d

)
·
(
ua+c
1 ūk+m−a−c

1 ub+d
2 ūl+n−b−d

2

)
za+bz̄k+l−a−bz ′c+dz̄ ′m+n−c−d

]}
!
=

∑
0≤k+l+m+n

1
k!l!m!n!

g̃klmn(µ)zkz̄ lz ′mz̄ ′n .

Note that u = u(µ) depends on the parameter µ, which we have omitted for the sake of simplicity. Comparing the sums
in the first equation and collecting coefficients of the same order leads to the correct expressions for g̃klmn of the second
equation.

With the coefficients g̃klmn at hand, one can apply the forward transform (A.3.19) to the coupling function (A.3.25) as
has been done at the end of Lemma A.5, and express g̃ in terms of w,w′ as the formal power series

g(w,w′) = g̃
(
ψ(w), ψ(w̄), ψ(w′), ψ(w̄′)

)
=

∑
k+l+m+n≥0

1
k!l!m!n!

g̃klmnψ(w)kψ(w̄)lψ(w′)mψ(w̄′)n

=:
∑

k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n . (A.3.29)

Due to the near-identity character of the transform ψ(w), the terms g̃klmn and gklmn coincide for k + l + m + n ∈ {0, 1}.
For higher-order terms we find

g2000 =
1
2 g̃2000 +

h20

2
g̃1000 +

h̄02

2
g̃0100, g1010 = g̃1010, g1001 = g̃1001,

g0200 =
1
2 g̃0200 +

h02

2
g̃1000 +

h̄20

2
g̃0100, g0110 = g̃0110, g0101 = g̃0101,

g0020 =
1
2 g̃0020 +

h20

2
g̃0010 +

h̄02

2
g̃0001, g1100 = g̃1100 + h11g̃1000 + h̄11g̃0100,

g0002 =
1
2 g̃0002 +

h02

2
g̃0010 +

h̄20

2
g̃0001, g0011 = g̃0011 + h11g̃0010 + h̄11g̃0001,

and some particular terms of third order

g2100 =
1
2 g̃2100 +

(
h20

2
+ h̄11

)
g̃1100 +

h̄12

2
g̃0100

g2001 =
1
2 g̃2001 +

h20

2
g̃1001 +

h̄02

2
g̃0101

g0120 =
1
2 g̃0120 +

h20

2
g̃0110 +

h̄02

2
g̃0101

g0021 =
1
2 g̃0021 +

(
h20

2
+ h̄11

)
g̃0011 +

h̄12

2
g̃0001

g1110 = g̃1110 + h11g̃1010 + h̄11g̃0110
g1011 = g̃1011 + h11g̃1010 + h̄11g̃0101 .

However, we can insert (A.3.29) into (A.3.24)

h(w, w̄,w′, w̄′) =

∑
k+l+m+n≥0

hklmnw
kw̄lw′mw̄′n

=

( ∑
k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n

)
+ 2a20

( ∑
k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n

)
· ψ(w) + · · · ,

(A.3.30)

and solve for the hklmn’s. As has been shown in Section 6.3.3, we only need a particular choice of coupling coefficients,
which are

h0000 = g0000, h0010 = g0010 + 2a20g0000 + a11ḡ0000, h0001 = g0001 + a11g0000 + 2a02ḡ0000,

h2100 = g2100 + a20 [2g1100 + h20g0100 + 2h11g1000] + a02
[
2ḡ0200 + 2h̄11ḡ0100 + h̄02ḡ1000 + h̄12ḡ0000

]
+ a11

[
g2000 + ḡ1100 + h̄11g1000 +

h̄02

2
g0100 +

h20

2
ḡ1000 + h11ḡ0100 +

h̄12

2
g0000

]
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+ 3a30 [g0100 + 2h11g0000] + a21
[
2g1000 + ḡ1000 +

(
h20 + 2h̄11

)
g0000 + 2h11ḡ0000

]
+ a12

[
2ḡ0100 + h̄02g0000 +

(
h20 + 2h̄11

)
ḡ0000

]
+ 3a03h̄02ḡ0000,

h2001 = g2001 + 2a20

[
g1001 +

h20

2
g0001

]
+ a11

[
h̄02

2
g0001 + ḡ0110 +

h20

2
ḡ0010

]
+ 2a02

h̄02

2
ḡ0010

+ 3a30g0001 + a21ḡ0010,
h0120 = g0120 + a11g0020 + 2a02ḡ0002,
h0021 = g0021,

and

h1110 = g1110 + 2a20 [g0110 + h11g0010] + a11
[
g1010 + h̄11g0010 + ḡ1001 + h11ḡ0001

]
+ 2a02

[
ḡ0101 + h̄11ḡ0001

]
+ 2a21g0010 + 2a12ḡ0001,

h1011 = g1011 + 2a20g0011 + a11ḡ0011 .

In comparison with Kuramoto’s reductive perturbation, see Appendix A.2.1, we find the coefficients

h0010 = g0010 = g̃0010 = v1(µ)g
(1)
0010u1(µ) + v2(µ)g

(2)
0010u2(µ) , (A.3.31)

h0120 = g0120 − h11g0020 − h02ḡ0002 (A.3.32)

=
1
2

(
g̃0120 − h11 g̃0020 − h02 g̃0002 + h20 g̃0110 + h̄02 g̃0101

− h11h20 g̃0010 − h11h̄02 g̃0001 − |h02|
2 g̃0010 − h20h02 g̃0001

)
.

Note that the first term in parentheses, g̃0120, can be ascribed to the coupling function G12, the second and third to G02,
the fourth and fifth to G11, and the latter four to G01, as they are used in Appendix A.2.1. In particular, in case of linear
coupling in the original dynamics, only the terms corresponding to G01 survive and (A.3.32) reduces to

h0120 = −
1
2

(
h11h20 g̃0010 + h11h̄02 g̃0001 + |h02|

2 g̃0010 + h20h02 g̃0001

)
. (A.3.33)

Last but not least, we consider a network of N > 2 coupled oscillators xk = (xk, yk) ∈ R2, k = 1, . . . ,N , following the
equivalent dynamics to (A.3.8),

ẋk = f (xk;µ) + κgk(x1, . . . , xN ;µ) + O(κ2) . (A.3.34)

The reasoning above extends to the full system dynamics (A.3.34). Especially the type of coupling between oscillators
fully translates into the corresponding coupling function hk in the reduced normal form dynamics ẇk = αwk − βw2

k w̄k +

κhk(w1, . . . , wN ). In fact, we can prove the following

Lemma A.6. Given system (A.3.34), where each uncoupled unit xk is close to a supercritical Hopf bifurcation with |µ| ≪ 1
and the coupling between units is sufficiently weak, 0 < κ ≪ |µ| ≪ 1. If the coupling function

gk(x1, . . . , xN ;µ) = ĝk(x1, . . . , xN ) :=

N∑
j=1

gkj(xj, xk)

can be decomposed into the sum of pairwise coupling functions gkj, then also the coupling function hk in the reduced Hopf
normal form decomposes into pairwise interactions,

hk(w1, . . . , wN ) =

N∑
j=1

hkj(wj, wk) .

Proof. The demonstration of the lemma is constructive and follows closely the proof of Lemma A.5. The main assumption
lies within the theory of weak coupling and can be justified in following way, see also the reasoning and proof
around [Theorem 5.8, 46]: A mathematically rigorous normal form reduction of the full network may consider coordinate
transforms of the form Z = Ψ (W ) where Z = (z1, . . . , zN ), W = (w1, . . . , wN ) and Ψ = (ψ1, . . . , ψN ) with
ψj = ψj(w1, . . . , wN ). This general transformation can presumably lead to mixed coupling terms in the normal form
beyond pairwise interactions; see Section 6.3.4 for the full Hopf normal form of a network with SN × S1-equivariance.
For weak coupling, however, we may consider ψj(w1, . . . , wN ) ≈ ψ0

j (wj) + κψ1
j (w1, . . . , wN ) and for κ → 0 we have

ψj(w1, . . . , wN ) = ψ0
j (wj). Given that the uncoupled systems are all identical, the local coordinate transforms ψ0

j = ψ

coincide with (A.3.19), which results in Ψ (W ) ≈
(
ψ(w1), . . . , ψ(wN )

)
. Then, the proof of the lemma follows immediately.

For the sake of completeness, we provide the details of the proof: Recall that we identified both the normal form and
coupling parameters β, hklmn by inserting the local coordinate transform ψ(w), see (A.3.19), into the derivative of the local
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inverse transform (A.3.23) and by a subsequent comparison of coefficients. Focusing on the terms of order O(κ), we have

ẇk = f (wk) + κ

[
gk(w1, . . . , wN ) + 2a20gk(w1, . . . , wN )ψ(wk)

+ a11
(
gk(w1, . . . , wN )ψ(wk) + gk(w1, . . . , wN )ψ(w̄k)

)
+ · · ·

] (A.3.35)

with f (w) consisting of terms that eventually become αw − βw2w̄ + O(|w|
4). Recall also that the coupling function

gk(w1, . . . , wN ) is determined from the original coupling ĝk via the transformations

ĝk(x1, . . . , xN ) ↦−→ g̃k(z1, . . . , zN ) ↦−→ gk(w1, . . . , wN ) .

Each of these transformations respects the form of coupling. In particular, for ĝk(x1, . . . , xN ) =
∑

j gkj(xj, xk), then g̃k and
eventually also gk can be decomposed exactly into gk(w1, . . . , wN ) =

∑
j gkj(wj, wk). Inserting this into (A.3.35) and given

that ψ(wk) is a polynomial only in wk, the right-hand side of (A.3.35) can be written in the form f (wk)+ κ
∑

j hkj(wj, wk)
with

hkj(wj, wk) := gkj(wj, wk) + 2a20gkj(wj, wk)ψ(wk) + a11
(
gkj(wj, wk)ψ(wk) + gkj(wj, wk)ψ(w̄k)

)
+ · · · + O(|w|

4) . □

A.4. Takens’ reduction via Lie brackets

We consider a two-dimensional system ẋ = f (x;µ), x = (x, y) ∈ R2 near a Hopf bifurcation. For a small perturbation
parameter µ > 0 and an equilibrium solution with eigenvalues ±iω0 ̸= 0 at µ = 0, we can shift the origin appropriately
such that x = 0 is the equilibrium solution undergoing a supercritical Hopf bifurcation. Furthermore, we can bring the
system into Jordan real form so that the dynamics expanded as a Taylor series around x = 0 reads

ẋ = Lx + F 2(x) + F 3(x) + · · · + F r (x) + O(|x|r+1), (A.4.1)

with

L = L0 + µL1 + O(µ2) =

(
0 −ω0
ω0 0

)
+ µ

(
β −α

α β

)
+ O(µ2) ,

F 2(x) =

(
F21(x)
F22(x)

)
=

(
a20 a11 a02
b20 b11 b02

)⎛⎝x2
xy
y2

⎞⎠ .

Note that for µ > 0 we can introduce µ = ε2 with 0 < ε ≪ 1 and that the common asymptotic scaling O(|x|) =

O(x) = O(y) = ε is used in (A.4.1) and all subsequent series approximations. Note further that we can extend the
(n = 2)-dimensional system ẋ = f (x;µ) to the larger, n + 1-dimensional system

ẋ = f (x;µ) ,
µ̇ = 0 .

(A.4.2)

One can perform the normal form calculations in a likewise manner, requiring the coordinate transforms P(x;µ) to be
of the form P(x;µ) = (P(x;µ);µ). Apparently, they will leave the equation µ̇ = 0 invariant, but transform ẋ = f (x;µ)
in a µ-dependent way. Practically, the normal form computations remain the same, yet, the n-dimensional normal form
system remains in normal form as µ is varied to drive the system through the bifurcation. While Poincaré’s reduction
via nonlinear transforms as presented in Section 4.3.2 takes the parameter dependence fully into account, Kuramoto’s
reductive perturbation approach, Section 4.3.1, does not consider the extended system. For illustration purposes, we stick
to the non-extended system also in this section to emphasize the reduction of the higher order normal form.46

Now, for w = (w1, w2)⊺ and Pk denoting the set of homogeneous polynomials of order k, the Lie bracket for system
(A.4.1) with L = L0x and pk = (pk1, pk2)⊺ ∈ Pk is given by

ad L(pk)(w) =

(
0 −ω0
ω0 0

)(
pk1(w)
pk2(w)

)
−

(
∂pk1/∂x ∂pk1/∂y
∂pk2/∂x ∂pk2/∂y

)(
0 −ω0
ω0 0

)(
w1

w2

)
. (A.4.3)

For second-order normal forms, we are looking for a transformation p2 of the form x = w + p2(w), where

p2(w) =

(
p21(w)
p22(w)

)
=

(∑2
j=0 cijw

i
1w

j
2∑2

j=0 dijw
i
1w

j
2

)
, i = 2 − j . (A.4.4)

46 In this particular section the order of the normal form is indicated by the index k of the subsequent transformations pk . Compared to the
general notation in all other parts of the report, k = 3 corresponds to second-order normal forms, k = 5 to third-order, etc.
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We shall perform the Lie bracket operation (A.4.3) on each basis element of P2, which is given by

P2 = span
{(
w2

1

0

)
,

(
w1w2

0

)
,

(
w2

2

0

)
,

(
0
w2

1

)
,

(
0

w1w2

)
,

(
0
w2

2

)}
. (A.4.5)

We find

ad L(P2) = span
{(
w2

1 w1w2 w2
2 0 0 0

0 0 0 w2
1 w1w2 w2

2

)
· A2

L

}
= P2 · A2

L , (A.4.6)

with

A2
L = ω0

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 −1 0 0
2 0 −2 0 −1 0
0 1 0 0 0 −1
1 0 0 0 −1 0
0 1 0 2 0 −2
0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎠ .

For ω0 > 0 we have det
(
A2
L

)
= 8ω0 > 0, that is, A2

L is non-singular and has full rank. This implies that the image of
P2 under ad L is the whole subspace P2, and therefore all second order terms can be removed by a suitable change of
variables. Indeed, substituting (A.4.4) into (4.14) of the main text and using that

(Dp(w))−1
= (I + Dpk(w))−1

= I − Dpk(w) + O(|w|
2) , (A.4.7)

we have

ẇ =

∞∑
N=0

(−1)N [Dp2(w)]N
{
Lw + Lp2(w) +

∞∑
n=2

n∑
m=0

DmF n(w)
m!

[p2(w)]m
}

(A.4.8)

= Lw +

Ñ∑
n=2

F (1)
n (w) (A.4.9)

where we truncated the Taylor series at order Ñ and with

F (1)
n (w) =

(
F (1)
n1 (w)

F (1)
n2 (w)

)
=

(∑2
j=0 a

(1)
ij w

i
1w

j
2∑2

j=0 b
(1)
ij w

i
1w

j
2

)
, n = 2, . . . , Ñ, i = 2 − j ; (A.4.10)

the number in the superscript parentheses refers to the index of coordinate transformations. Since the complement H2
of im (ad L(P2)) in P2 is H2 = {0}, we have

F (1)
2 (w) = F 2(w) + Lp2(w) − Dp2(w) · L(w) = 0 , (A.4.11)

that is, a(1)ij = b(1)ij = 0 for all i+ j = 2. Note that in order to derive F (1)
2 at order O(ε2), we again used that µ = ε2 and that

F (l)
n = O(εn) in the series representation (A.4.10). Solving now the linear algebraic equation (A.4.11) for p2 in the space

P2, we find the coefficients cij, dij in (A.4.4) as⎛⎜⎜⎜⎜⎜⎝
c20
c11
c02
d20
d11
d02

⎞⎟⎟⎟⎟⎟⎠ = −
(
A2
L

)−1

⎛⎜⎜⎜⎜⎜⎝
a20
a11
a02
b20
b11
b02

⎞⎟⎟⎟⎟⎟⎠ = −
(
3ω0

)−1

⎛⎜⎜⎜⎜⎜⎝
b20 + a11 + 2b02

−2a20 − b11 + 2a02
2b20 − a11 + b02
a20 + b11 − 2a02

−2b20 + a11 + 2b02
−2a20 − b11 − a02

⎞⎟⎟⎟⎟⎟⎠ . (A.4.12)

As said, the higher order normal form computations build upon each other iteratively. Hence, for the third-order normal
form we are looking for a transformation x = w + p3(w) with

p3(w) =

(
P31(w)
P32(w)

)
=

(∑3
j=0 cijw

i
1w

j
2∑3

j=0 dijw
i
1w

j
2

)
, i = 3 − j . (A.4.13)

P3 is eight-dimensional and given by

P3 = span
{(
w3

1

0

)
,

(
w2

1w2

0

)
,

(
w1w

2
2

0

)
,

(
w3

2

0

)
,

(
0
w3

1

)
,

(
0

w2
1w2

)
,

(
0

w1w
2
2

)
,

(
0
w3

2

)}
. (A.4.14)

Similar to (A.4.6), we find

ad L(P3) = P3 · A3
L (A.4.15)
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with

A3
L = ω0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 −1 0 0 0
3 0 −2 0 0 −1 0 0
0 2 0 −3 0 0 −1 0
0 0 1 0 0 0 0 −1
1 0 0 0 0 −1 0 0
0 1 0 0 3 0 −2 0
0 0 1 0 0 2 0 −3
0 0 0 1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The vectors e1 = (1, 0, 1, 0, 0, 1, 0, 1)⊺ and e2 = (0,−1, 0,−1, 1, 0, 1, 0)⊺ are two eigenvectors corresponding to the zero
eigenvalue of A3

L . Therefore, A
3
L induces a non-vanishing complementary space H3 given by

H3 = P3 ·

(
e1 e2

)
= span

{(
w1(w2

1 + w2
2)

w2(w2
1 + w2

2)

)
,

(
−w2(w2

1 + w2
2)

w1(w2
1 + w2

2)

)}
. (A.4.16)

The resulting third-order normal form takes the following form

ẇ1 = βµw1 − (αµ+ ω0)w2 + a1w1(w2
1 + w2

2) − b1w2(w2
1 + w2

2) + O(|w1|
5, |w2|

5) ,

ẇ2 = (αµ− ω0)w1 + βµw2 + a1w2(w2
1 + w2

2) + b1w1(w2
1 + w2

2) + O(|w1|
5, |w2|

5) ,
(A.4.17)

where a1, b1 are to be determined. In the same manner as before, we have

ẇ =

Ñ∑
N=0

(−1)N [Dp3(w)]N

⎧⎨⎩Lw + Lp3(w) +

Ñ∑
n=2

n∑
m=0

DmF n(w)
m!

[p3(w)]m

⎫⎬⎭
= Lw + F (1)

2 (w) +

Ñ∑
n=3

F (2)
n (w) (A.4.18)

where

F (2)
n (w) =

(
F (2)
n1 (w)
F (2)
n2 (w)

)
=

(∑2
j=0 a

(2)
ij w

i
1w

j
2∑2

j=0 b
(2)
ij w

i
1w

j
2

)
, n = 3, . . . , Ñ, i = 3 − j . (A.4.19)

Thus, we have to solve

F (2)
3 (w) = F (1)

3 (w) + Lp3(w) − Dp3(w) · L(w) = H3(w) (A.4.20)

for p3, which we can rewrite in terms of the basis functions of P3 as

A3
L · ξ = F (1)

3 − H3 =: κ (A.4.21)

where we used (A.4.16) to get

ξ = {c30, c21, c12, c03, d30, d21, d12, d03}⊺ ,

κ = {a(1)30 − a1, a
(1)
21 + b1, a

(1)
12 − a1, a

(1)
03 + b1, b

(1)
30 − b1, b

(1)
21 − a1, b

(1)
12 − b1, b

(1)
03 − a1}⊺ .

Following the procedure outlined in [116,117], we find the resulting coefficients as(
a1
b1

)
=

1
8

(
a(1)12 + 3a(1)03 + b(1)21 + 3b(1)03

−a(1)21 − 3a(1)03 + b(1)12 + 3b(1)30

)
,

⎛⎜⎝c30
c21
c12
c03

⎞⎟⎠ =
1

8ω0

⎛⎜⎜⎝
0

3a(1)30 − 3a(1)12 + b(1)21 − b(1)03
3a(1)21 − 3a(1)03 + b(1)30 + b(1)12

0

⎞⎟⎟⎠ ,

⎛⎜⎝d30
d21
d12
d03

⎞⎟⎠ =
1

4ω0

⎛⎜⎜⎝
a(1)30 + a(1)12 − b(1)21 − b(1)03

a(1)21 + 3a(1)03 + 5b(1)30 − b(1)12
3a(1)30 + a(1)12 + b(1)21 + 5b(1)03
a(1)21 + a(1)03 + b(1)30 + b(1)12

⎞⎟⎟⎠ .

(A.4.22)

Applying the same procedure, we can continue these calculations and derive the coefficients of the normal forms of order
5 and higher. Generalizing system (A.4.17), the normal form of order (2M − 1) can be written as

d
dt

(
w1

w2

)
=

(
βµ −(αµ+ ω0)

(αµ+ ω0) βµ

)(
w1

w2

)
+

M−1∑
j=1

(w2
1 + w2

2)
j
(
aj −bj
bj aj

)(
w1

w2

)
+ O(|w|

2M+3) , (A.4.23)

or in complex form for w ∈ C as

ẇ = [(β + iα)µ+ iω0]w +

M−1∑
j=1

(aj + ibj)|w|
2jw + O(|w|

2M+3) . (A.4.24)
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For fifth order, the next coefficients can be found as(
a2
b2

)
=

1
16

(
5a(3)50 + a(3)32 + a(3)14 + b(3)41 + b(3)23 + 5b(3)05

−a(3)41 − a(3)23 − a(3)14 − a(3)05 + 5b(3)50 + b(3)32 + b(3)14

)
. (A.4.25)

The corresponding coefficients cij, dij with i+j = 5 for the transform p5(w) are listed in [116]. The complexity of computing
the coefficients for higher order normal forms increases rapidly — determining a(3)ij , b

(3)
ij builds recursively on a(2)ij , b

(2)
ij

and the lower order near-identity transformations pk, k ≤ 4. It becomes necessary to implement efficient algorithms
in symbolic computation software without running in danger of overflow errors due to memory storage. An arithmetic
algorithm including the computation of normal forms up to order 11 has been presented in [117].

Once higher-order normal forms and their corresponding series of transformations pk have been established, the
latter can be applied to the coupling term κg(x, x′) of (4.12). For our purposes, however, it is sufficient to consider
the transformed coupling up to third order. As we have illustrated the derivation of the coupling term using nonlinear
transforms in great detail in Appendix A.3, we refrain here from further cumbersome calculations.

A.5. Ashwin & Rodrigues’ reduction via SN × S1-symmetry

Ashwin and Rodrigues consider in [74] coupled oscillators wk ∈ C, k = 1, . . . ,N > 4, which follow the dynamics

ẇk = f (wk;µ) + κ g(wk, w1, . . . , wk−1, wk+1, . . . , wN ;µ) + O(κ2) , (A.5.1)

and where the whole network respects full permutation symmetry SN and rotational invariance S1. Using equivariant
theory, they prove their main result in terms of the following phase reduction.

Theorem A.7 (Theorem 3.2. [74]). Consider system (A.5.1) with SN -symmetry (for fixed N > 4) such that the N uncoupled
systems (κ = 0) undergo a generic supercritical Hopf bifurcation on µ passing through µ = 0. There exists µ0 > 0 and
κ0 = κ0(µ) such that for any µ ∈ (0;µ0) and |κ| < κ0(µ) the system (A.5.1) has an attracting C r -smooth invariant N-
dimensional torus for arbitrarily large r. On this invariant torus, the phases θk of the flow can be expressed as a coupled
oscillator system

θ̇k = Ω̃(θ, κ) + κ

(
H (2)

k (θ ) + H (3)
k (θ ) + H (4)

k (θ )
)

(A.5.2)

H (2)
k (θ ) =

1
N

N∑
j=1

H2(θj − θk)

H (3)
k (θ ) =

1
N2

N∑
j,l=1

H3,1(θj + θl − 2θk) +
1
N2

N∑
j,l=1

H3,2(2θj − θl − θk) (A.5.3)

H (4)
k (θ ) =

1
N3

N∑
j,l,m=1

H4(θj + θl − θm − θk)

for fixed 0 < µ < µ0 in the limit κ → 0, where Ω̃(θ, κ) is independent of k and

H2(ϕ) = ξ 01 cos(ϕ + χ0
1 ) + µξ 11 cos(ϕ + χ1

1 ) + µξ 12 cos(2ϕ + χ1
2 )

H3,1(ϕ) = µξ 13 cos(ϕ + χ1
3 )

H3,2(ϕ) = µξ 14 cos(ϕ + χ1
4 )

H4(ϕ) = µξ 15 cos(ϕ + χ1
5 ) .

(A.5.4)

The constants ξ ji and χ j
i are generically non-zero. The natural frequency Ω̃ of each oscillator in the reduced phase dynamics

(A.5.2) is given by

Ω̃(θ, κ) = Ω + κµ

⎡⎣−ϑ4

βR
cos(ψ4) −

ϑ5

βRN2

N∑
j,k=1

cos(ψ5 + θj − θk)

⎤⎦ (A.5.5)

with Ω = αI − µ(βI/βR) + O(µ2). The error term truncated in (A.5.2) satisfies g̃ = O(µ2) uniformly in the phases θk.
This truncation by removing g̃ and O(κ2) terms is valid over time intervals 0 < t < t̃ where t̃ = O(κ−1µ−2) in the limit
0 < κ ≪ µ ≪ 1. In particular, for any N, this approximation involves up to four interacting phases.

Before we go into detail of the proof, we first state an immediate corollary for large oscillator systems of the form
(A.5.1) with SN × S1-equivariance, where each uncoupled system is close to a supercritical Hopf bifurcation.
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Corollary A.8. In the limit of weak coupling 0 < κ ≪ µ ≪ 1 and for a reasonably large network size N ≫ 4, the coupled
oscillator system (A.5.2) reduces to

θ̇k = Ω + κ̂ε2

⎛⎝ 1
N

N∑
j=1

[
ξ 01 cos

(
θj − θk + χ0

1

)
+ ε2ξ 12 cos

(
2(θj − θk) + χ1

2

)]
+ O(ε3)

⎞⎠ (A.5.6)

with Ω = αI − ε2(βI/βR) + O(ε4) and ε2 = µ as well as κ̂ = κε2 with ε > 0. In particular, the phase interaction function of
(A.5.6) consists of first and second harmonics with merely pairwise interactions.

Proof. For large N ≫ 4, we can assume that 1/N = O(ε) where ε > 0 is such that ε2 = µ. In the weak coupling limit,
we set κ̂ = κε2. The natural frequency Ω coincides with Ω̃ at order O(ε4, κ̂ε4), see also (A.5.5). The terms H (3)

k (θ ),H (4)
k (θ )

in Theorem A.7 are of order O(κ̂ε5). Moreover, the term µξ 11 cos(ϕ+χ1
1 ) in g2(θ ) is only some higher-order correction to

the first harmonics, and can thus be discarded. The remaining terms finally constitute (A.5.6). □

The proof of Theorem A.7 can be found in [74] where the authors use Theorem 3.1, which is proven in [Theorem 4.2,
189]. It is noteworthy that this Theorem 3.1 provides a thorough decomposition of the coupling function g(w1, . . . , wN ;µ)
when given as a polynomial of degree lower than or equal to 3. In fact, any polynomial function h:CN

→ CN of degree
lower than or equal to 3 with N ≥ 4 and which respects the SN × S1-equivariance can be written as h = (h1, . . . , hN )
where

h1(w1, w2, . . . , wN ) =

11∑
i=−1

aiĥi(w1, w2, . . . , wN )

h2(w1, w2, . . . , wN ) = h1(w2, w1, . . . , wN )
...

hN (w1, w2, . . . , wN ) = h1(wN , w2, . . . , w1)

(A.5.7)

and ĥ0(w) = w1, ĥ1(w) = |w1|
2w1, as well as

ĥ−1(w) =
1
N

N∑
j=1

wj, ĥ2(w) = w2
1
1
N

N∑
j=1

w̄j, ĥ3(w) = |w1|
2 1
N

N∑
j=1

wj,

ĥ4(w) = w1
1
N

N∑
j=1

|wj|
2, ĥ5(w) = w1

1
N2

N∑
j,k=1

wjw̄k, ĥ6(w) = w̄1
1
N

N∑
j=1

w2
j ,

ĥ7(w) = w̄1
1
N2

N∑
j,k=1

wjwk, ĥ8(w) =
1
N

N∑
j=1

|wj|
2wj, ĥ9(w) =

1
N2

N∑
j,k=1

w2
j w̄k,

ĥ10(w) =
1
N2

N∑
j,k=1

wj|wk|
2, ĥ11(w) =

1
N3

N∑
j,k,l=1

wjwkw̄l,

(A.5.8)

for constants ai ∈ C, i = −1, . . . , 11. Note that in order to respect the rotational invariance, no constant terms can appear.
Moreover, the symmetries make all polynomial terms of degree two vanish. Now, assuming that the linear term a0w1 and
the first cubic term a1|w1|

2w1 are contained in f (w1) = αw1 − β|w1|
2w1 as in (A.5.1), see also (6.20), we are left with in

total eleven coupling terms aiĝi that will determine the phase interaction function of the reduced phase dynamics (A.5.2).
Writing the complex constants as

aj = ρjeiφj ,

Ashwin and Rodrigues [74] indicate instructions how to derive the desired constants ξ ji and χ j
i in (A.5.4). First, one

determines ϑj and ψj, j = −1, 1, . . . , 11, by

ϑj cos(ψj + φ) := ρj sin(φj + φ) −
βI

βR
ρj cos(φj + φ) ,

where βI/βR = C(0)/A(0) with C(0) = −2βI/βR and A(0) = −2 with β = βR+ iβI . Using Eq.(4.30) of [74] and abbreviating

δ =
C ′(0)A(0) − C(0)A′(0)

A(0)2
= lim

λ→0

d
dλ

C(λ)
A(λ)

, (A.5.9)
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one can deduce
ξ 01 = ϑ−1, χ0

1 = ψ−1,

ξ 11 = −
1
βR

√
[ϑ2 cos(ψ2) + ϑ3 cos(ψ3) + ϑ8 cos(ψ8) + ϑ10 cos(ψ10) + δβRρ−1 cos(φ−1)]2 +

+ [−ϑ2 sin(ψ2) + ϑ3 sin(ψ3) + ϑ8 sin(ψ8) + ϑ10 sin(ψ10) + δβRρ−1 sin(φ−1)]2 + O(µ),

χ1
1 = arctan

(
−ϑ2 sin(ψ2) + ϑ3 sin(ψ3) + ϑ8 sin(ψ8) + ϑ10 sin(ψ10) + δβRρ−1 sin(φ−1)
ϑ2 cos(ψ2) + ϑ3 cos(ψ3) + ϑ8 cos(ψ8) + ϑ10 cos(ψ10) + δβRρ−1 cos(φ−1)

)
,

ξ 12 = −ϑ6/βR + O(µ), χ1
2 = ψ6,

ξ 13 = −ϑ7/βR + O(µ), χ1
3 = ψ7,

ξ 14 = −ϑ9/βR + O(µ), χ1
4 = ψ9,

ξ 15 = −ϑ11/βR + O(µ), χ1
5 = ψ11 .

(A.5.10)

In particular, we can determine an explicit value for δ as presented in the following lemma.

Lemma A.9. For the dynamics

ż = αz − β|z|2z + τ (z), where τ (z) = ~z4 + O(z5),

we get an explicit value for δ as defined in (A.5.9), which reads

δ = −2
~I

α2
R

+
5
2
~RαI

α3
R
.

Moreover, if ~ = 0, then also δ = 0.

Proof. In the following, we will use that λ ∈ R and that we can write τ (z) = τR(z)+ iτI (z) with τR/I real-valued functions.
For x ∈ R, we have

τR(x) = ~Rx4 + O(x5) and τI (x) = ~Ix4 + O(x5) .

As has been defined in [74], A(λ) and C(λ) are given by

A(λ) =
U ′

R(R∗)
λ

with U ′

R(z) = λ+ 3αz2 + τ ′

R(z)z + τR(z)

C(λ) =
R∗(λ)B(λ)

√
λ

with B(λ) =
2αIR∗ + τ ′

I (R∗)
√
λ

and R∗ = R∗(λ) is the solution of

0 = λ+ αRR2
∗
+ τR(R2

∗
) H⇒ R2

∗
(λ) =

λ

−αR
+ O(λ) .

That is,

C(λ)
A(λ)

=
2αIR2

∗
+ τ ′

I (R∗)R∗

λ+ 3αRR2
∗
+ τ ′

R(R∗) + τR(R∗)
.

Dividing by R2
∗
and substituting in the leading order of R2

∗
, we find

C(λ)
A(λ)

=

2αI −
4~I
αR
λ+ O(λ2)

2αR −
5~R
αR
λ+ O(λ2)

.

Hence, it follows

δ =
d
dλ

⏐⏐⏐⏐
λ=0

C(λ)
A(λ)

=

−8~I + 10~R
αI
αR

4α2
R

,

which gives the desired result. Additionally, if τ (z) = O(z5), or even τ ≡ 0, we have ~ = 0, and therefore also δ = 0. □

We close this section of the Appendix with a few brief comments on the coupling functions gk in the (Hopf) normal
form description (A.5.1) of the full network of coupled identical systems close to a supercritical Hopf bifurcation.

Remark. If the coupling function gk in the Hopf normal form description can be fully decomposed into the sum of pairwise
interactions between oscillators, the following coupling parameters as introduced in (A.5.7) all vanish,

a5 = a7 = a9 = a10 = a11 = 0 .
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The only non-vanishing coefficients of the Hopf normal form description are

a−1 = h0010, a2 = h2001, a3 = h1110, a4 = h1011, a6 = h0120, a8 = h0021 .

This means that the constants

ξ 01 , ξ
1
1 , ξ

1
2 and χ0

1 , χ
1
1 , χ

1
2

are non-zero, which leads to the reduced phase dynamics

θ̇k = Ω + κε2
−ϑ4

βR
cos(ψ4) +

κ

N

N∑
j=1

[
ξ 01 cos(θj − θk + χ0

1 ) + ε2
(
ξ 11 cos(θj − θk + χ1

1 ) + ξ 12 cos(2(θj − θk) + χ1
2 )
)]
.

(A.5.11)

Note that the coupling term in (A.5.11) consists again of the first two harmonics only: the terms ξ 01 cos(ϕ + χ0
1 ) +

εξ 11 cos(ϕ + χ1
1 ) can be comprised by trigonometric identities to ξ1 cos(ϕ + χ1). Yet, the contribution of the second term

to the (collected) first harmonic is only minor due to the magnitude being of order O(ε2), and hence can be neglected.
Moreover, the amplitude of the second harmonic cos(2ϕ+χ1

2 ) is O(ε2), that is, of one order higher than the first harmonic.
In total, the only constants that represent major contributions to the phase dynamics are ξ 01 and ξ 12 , which correspond
by (A.5.10) to a−1 = h0010 and a6 = h0120, respectively — these are also the main contributors to the phase dynamics
considered in Appendix A.2.2. Besides, disregarding the minor corrections of order O(ε2), the natural frequency term
Ω = αI − αRβI/βR (note that αR = ε2 = µ) coincides with the one derived in Section 6.3.2.

In general, the coupling functions gk in the Hopf normal form description of the full network are not restricted to
pairwise interactions, but they are linear combinations of the 11 terms given in (A.5.8). Deducing the respective factors
in this linear combination from the underlying dynamics ẋk = f (xk) + κgk(x1, . . . , xN ) with N ≥ 4 in a general way is
beyond the scope of this report. Such a general normal form reduction would probably distort the ostensive link between
the original coupling functions gk and the normal form coupling functions gk: The structure of pairwise interactions in the
underlying dynamics, gk(x1, . . . , xN ) =

∑
j gkj(xk, xj), may not be respected in the reduced Hopf normal form description

gk(w1, . . . , wN ) ̸=
∑

j gkj(wk, wj).
Still, given our goal to provide a phase reduction of the underlying dynamics, it appears sufficient to concentrate on

those coupling terms in the Hopf normal form that have significant contributions to the reduced phase dynamics. The
independent considerations and derivations in Section 6.3.3 and Corollary A.8 suggest that for large networks in the limit
of weak coupling the dominant coupling terms are indeed those stated in the previous Remark. As a consequence, we
only need to find these coupling parameters. While a mathematically thorough network normal form reduction for large N
becomes rather lengthy and hence unpractical, the approaches in Section 7 seem to provide decent approximations for the
sought-for coupling parameters, as demonstrated by the numerical simulations throughout Sections 8 and 9. Nonetheless,
both approaches are approximations for the following distinct reasons: Following Kuramoto’s reductive perturbation
approach, in particular cf. Appendix A.2.2, the derivation is based on mere pairwise interactions of the underlying dynamics
and the subsequent reduction steps only respect the bifurcation parameter-dependence up to first order. On the other
hand, following Poincaré’s nonlinear transform approach the parameter-dependence is preserved throughout the reduction
but the transformation steps are solely targeted at the Hopf normal form of a single oscillator but not at the Hopf normal
form of the full network, see Appendix A.3. This latter assumption may be justified in the limit of weak coupling, see
also [46], but a rigorous proof, or an error estimate, respectively, are missing.

A.6. Ermentrout & Kopell’s phase–amplitude reduction

Given the significance of their pioneering work [53–55], we deem it appropriate to detail Ermentrout and Kopell’s
‘‘infinite attraction’’ method, which is based upon a coordinate transformation xk = Tk(θk, ρk) of the oscillatory dynamics
in terms of phase and amplitude variables and results in an amplitude-corrected phase dynamics

θ̇k = ω + κ H̃k(θk − θj) with H̃k(ψ) =
1
2π

∫ 2π

0
Z̃(t) · gk

(
xc(t + θk), xc(t + θj)

)
dt .

Here, Z̃(t) deviates from the conventional phase sensitivity function Z(t) when amplitude dynamics are ignored. In
the limit of infinite attraction, however, that is, if the relaxation towards the limit cycle after a perturbation occurs
instantaneously, then Z̃(t) and Z(t) will coincide.

To begin with, we consider an oscillator ẋk = f k(xk), xk ∈ Rn, with an asymptotically stable limit cycle solution xck(t)
with period Tk and frequency ωk = 2π/Tk. The coordinate transformation Tk is such that it maps xk to variables θk ∈ S1

and ρk ∈ Rn−1:

xk(t) = Tk
(
θk(t), ρk(t)

)
= xck (θk(t))+ Mk

(
θk(t)

)
ρk(t) + O2(ρk) , (A.6.1)



B. Pietras and A. Daffertshofer / Physics Reports 819 (2019) 1–105 95

where Mk(θ ) is an n × (n − 1)-matrix and normalized such that it fulfills

Mk(θ )⊺Mk(θ ) = I (n−1)×(n−1)[
∂θxck(θ )

]⊺Mk(θ ) = 01×(n−1) .
(A.6.2)

Here, ∂θ = d/dθ denotes the derivative with respect to θ . For small |ρk| ≪ 1, one can express the dynamics ẋk = f k(xk)
in the phase and amplitude variables as

θ̇k = ωk + f1,k(θk, ρk) + O2(ρk)
ρ̇k = Ak(θk)ρk + o(ρk) .

(A.6.3)

The function f1,k(θk, ρk) = O(ρk) is such that f1,k → 0 for ρk → 0, so that on the limit cycle we retrieve θ̇k = ωk. With
the Jacobian Lk(θ ) = ∇f (x)

⏐⏐
x=xck(θ )

of f evaluated at the limit cycle xck, and abbreviating ςk(θ ) =
⏐⏐∂θxck(θ )⏐⏐2, the functions

f1,k : S1
× Rn−1

→ S1 and Ak : S1
→ R(n−1)×(n−1) can be found [55] as

f1,k(θ, ρ) =
ωk

ςk(θ )

[
∂θxck(θ )

]⊺[Lk(θ ) + Lk(θ )⊺
]
Mk(θ )ρ

Ak(θ ) = ωk
[
Mk(θ )⊺Lk(θ )Mk(θ ) +

[
∂θMk(θ )

]⊺Mk(θ )
]
.

(A.6.4)

We now consider two coupled nearly-identical oscillators xk, xj with dynamics

ẋk = f (xk) + κ gk(xk, xj) , xk ∈ Rn. (A.6.5)

Specifically, we search for solutions of the form

xk(t) = xc(t) + κ uk(t) , (A.6.6)

where xc(t) denotes the T -periodic limit cycle solution of ẋ = f (x) with frequency ω = 2π/T , and uk is such that it
converges to zero for solutions on the limit cycle x(t) = xc(t). Applying the coordinate transformation T as introduced in
(A.6.1) to both oscillators yields the corresponding dynamics in phase and amplitude variables

θ̇k = ω + f1(θk, ρk) + κ hk(θk, θj) + O(|ρk, ρj|)
ρ̇k = A(θk)ρk + κ dk(θk, θj) + O(|ρj|) + o(|ρk|)

(A.6.7)

with the functions f1 and A as given in (A.6.4) and

hk(θk, θj) =
ω

ς (θk)

[
∂θxc(θ )

]⊺gk
(
xc(θk), xc(θj)

)
dk(θk, θj) = ωM(θk)⊺gk

(
xc(θk), xc(θj)

)
.

(A.6.8)

Note that (A.6.7) with (A.6.8) are general and hold for any coupling strength κ ∈ R at leading order in ρk and ρj, the latter
approximation allows us to evaluate the coupling terms gk at the respective limit cycles.

In the weak coupling limit 0 ≤ κ ≪ 1 while allowing for finite attraction to the limit cycle, the normal coordinates ρk
are κ-close to the limit cycle. We can thus introduce ρk = κsk, and (A.6.7) becomes

θ̇k = ω + κ
{
b(θk)sk + ς (θk)−1[∂θxc(θ )]⊺gk

(
xc(θk), xc(θj)

)}
+ O2(κ) ,

ṡk = A(θk)sk + ωM(θk)⊺gk
(
xc(θk), xc(θj)

)
+ O(κ) ,

(A.6.9)

with b(θk) = ως (θk)−1
[
∂θxc(θ )

]⊺ [L(θk) + L(θk)⊺]M(θk). In order to determine the phase interaction function Hk for finite
ρk, we have to take the additional term b(θk)sk into account when applying averaging.

Before deriving the averaged solution, we first recall that we are looking for solutions of the form (A.6.6), in which uk
now additionally evolves on a slower time scale τ = κt , that is, we seek for solutions

xk(t) = xc (θk)+ κ uk(t, τ , κ) with θk(τ ) = t + φk(τ ) . (A.6.10)

Note that φk = φk(τ ) are slowly-varying phase deviations from the natural frequency, which we set to ω = 1 without
loss of generality. When substituting the ansatz (A.6.10) in (A.6.5), we find at first order in κ

L(t + φk)uk(t, τ , 0) ≡

[
d
dt

− L(t + φk)
]
uk(t, τ , 0) = −∂θxc(t + φk)

∂φk

∂τ
+ gk

(
xc(t + φk), xc(t + φj)

)
. (A.6.11)

To solve (A.6.11) for periodic solutions uk, we rely on the Fredholm alternative, see, e.g., [283], according to which

L(t)ξ(t) = g(t) (A.6.12)

has a 2π-periodic solution ξ(t) if and only if∫ 2π

0
χ(t)g(t)dt = 0 , (A.6.13)
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Table B.1
Phase models derived with different reduction techniques for linear coupling and near the Hopf bifurcation, µ = 0.0417. The oscillators’ natural
frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Parameters are (a, d) = (2.55, 0.65).
Numeric values correspond to Table 8.1.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.537 −2.0649 0.0505 0.0080 −0.0052
Nonlinear transform 2.534 −2.1146 0.0781 0.0167 −0.0111
Direct averaging × × × × ×

Numerical/adjoint 2.474 0.8302 0.0345 −0.0027 −0.0017

where χ(t) solves the corresponding homogeneous adjoint problem

L∗(t)χ(t) ≡

[
d
dt

− L(t)⊺
]

χ(t) = 0 . (A.6.14)

We achieve uniqueness of the solution by requiring the normalization condition

1
2π

∫ 2π

0
χ(t)∂θxc(t)dt = 1 . (A.6.15)

Hence, in order to find a solution of (A.6.11), we combine (A.6.13) and (A.6.15) to obtain

∂φk

∂τ
= H̃k(φk − φj) ≡

1
2π

∫ 2π

0
χ(t)gk

(
xc(t + φk), xc(t + φj)

)
dt . (A.6.16)

The function χ(t) turns out to be

χ(t) =
[
ς (t)−1∂θxc(t)ϱ(t)

]⊺ (A.6.17)

with

ϱ(t)⊺ =
[
Q (2π ) [In−1 − E(2π )]−1

− Q (t)
]
E(t)−1M(t)⊺ ,

where E(t) is the solution to dE/dt = A(t)E with initial condition E(0) = In−1 and Q (t) satisfies Q (t) =
∫ t
0 b(s)E(s)ds.

Indeed, inserting the ansatz

χ(t) = ∂θxc(t)ζ (t) + M(t)z(t) (A.6.18)

into the adjoint problem (A.6.14) with normalization (A.6.15), we find that ζ (t) = ς (t)−1 and z satisfies z ′
= −A(t)⊺z −

b(t)⊺, which eventually leads to the unique solution (A.6.17). Using (A.6.16) we thus find the ‘amplitude-corrected’ phase
dynamics

θ̇k = 1 + κ H̃k(θk − θj) = 1 +
κ

2π

∫ 2π

0

[
ς (t)−1∂θxc(t)ϱ(t)

]⊺gk
(
xc(t + θk), xc(t + θj)

)
dt . (A.6.19)

For more mathematical details, we refer to [55].

Appendix B. Numerical details

B.1. Brusselator

For every parameter pair (a, d) ∈ [1, 3] × [0, 1] the network simulations ran for Tend = 107 seconds using the Matlab
Runge–Kutta-4,5 solver with relative and absolute accuracy fixed at 10−8 and 10−10, respectively. The oscillators were
initially distributed on an unperturbed limit cycle such that the Kuramoto order parameter was close to zero. At the
end of the simulation time Tend, the phases of the oscillators were extracted via a Hilbert transform and analyzed with
respect to clustering. We applied a reformulated hierarchical cluster algorithm on a flat torus and used a segmentation
index to determine phase clusters of the oscillators, see [314] for more details on the phase cluster algorithm, there for
the case of K-means clustering. The resulting clusters were monitored with respect to their stability over a subsequent
10 second simulation interval of the full Brusselator network. If both intercluster stability (in terms of variances of the
phase differences of the cluster centroids) and intracluster stability (in terms of variances within clusters) was given, we
assigned the particular number of clusters to the parameter pair. Otherwise, we assumed the network to be incoherent.
We identified incoherence with a stable n-cluster state with n ≥ 25 as detected by the phase cluster algorithm. The
following Tables B.1–B.4 provide the exact numerical values corresponding to the symbolic Tables 8.1–8.4 of Section 8.
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Table B.2
Phase models derived with different reduction techniques for linear coupling and away from the Hopf bifurcation, µ = 0.1670. The oscillators’ natural
frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Parameters are (a, d) = (2.55, 0.65).
Numeric values correspond to Table 8.2.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.348 −2.0649 0.0505 0.1285 −0.1144
Nonlinear transform 1.832 −3.2763 0.7276 0.5156 −0.5816
Direct averaging × × × × ×

Numerical/adjoint 2.671 1.3490 0.2997 −0.0579 −0.0557

Table B.3
Phase models derived with different reduction techniques for linear coupling and near the Hopf bifurcation, µ = 0.0417. The oscillators’ natural
frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Parameters are (a, d) = (2.55, 0.75).
Numeric values correspond to Table 8.3.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.537 −2.05015 −0.2496 0.0031 +0.0000
Nonlinear transform 2.524 −2.0880 −0.2300 0.0063 −0.0001
Direct averaging × × × × ×

Numerical/adjoint 2.474 0.8378 −0.0838 −0.0010 +0.0000

Table B.4
Phase models derived with different reduction techniques for nonlinear coupling and away from the Hopf bifurcation, µ = 0.1670. The oscillators’
natural frequency is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H . Parameters are (a, d) =

(2.55, 0.75). Numeric values correspond to Table 8.4.
Approach ω a1 b1 a2 b2
Reductive perturbation 2.345 −2.0355 −0.2496 0.0489 0.0004
Nonlinear transform 1.832 −3.3177 0.2340 0.1728 −0.0459
Direct averaging × × × × ×

Numerical/adjoint 2.671 1.7280 0.2037 −0.0241 −0.0239

B.2. Wilson–Cowan neural mass

Throughout Section 9, we used the following version of the Wilson–Cowan neural mass model, as has been motivated
around (9.4) & (9.6), where the coupling dynamics is such that only oscillatory behavior of one neural mass can exert
influence on another.

d
dt

Ek = −Ek + S

[
aE

(
cEEEk − cIE Ik −ΘE + Pk +

κ

N

N∑
l=1

Ckl
(
El − E0

l

))]
(B.2.1a)

d
dt

Ik = −Ik + S [aI (cEIEk − cII Ik −ΘI)] , (B.2.1b)

Not only does this choice cancel an additional constant input that is proportional to the coupling strength, but it
also simplifies the polynomial approximation of the Wilson–Cowan dynamics in terms of the deviations (xk, yk) =

(Ek−E0
k , Ik− I0k ) from the unstable fixed point (E0

k , I
0
k ). This is in particular important to ease the phase reduction following

either of the analytic techniques.

Numerical values for symbolic tables. In Section 9.5, we considered the parameters

aE = 1.2, aI = 2, cEE = cEI = 10, cIE = 6, cII = 1,ΘE = 2.5,ΘI = 3.5,

and varied the control parameter Pk. The supercritical Hopf bifurcation occurs at PH = −0.3663, and we denote the
distance to the Hopf point in parameter space with µ = Pk − PH . The first four Fourier coefficients of the reduced phase
model

θ̇k = ωk +
κ

N

N∑
j=1

a1 cos
(
θk − θj

)
+ b1 sin

(
θk − θj

)
+ a2 cos

(
2(θk − θj)

)
+ b2 sin

(
2(θk − θj)

)
could be derived for different values of µ following the direct averaging, the numerical reduction method as well as
Kuramoto’s reductive perturbation and Poincaré’s nonlinear transform approach. The results are presented for µ = 0.0003
in Table B.5, for µ = 0.0013 in Table B.6, and for µ = 0.1663 in Table B.7.
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Table B.5
Phase models derived with different reduction techniques infinitesimally close to the Hopf bifurcation (µ = 0.0003). The oscillators’ natural frequency
is ω, and an, bn are the amplitudes of the Fourier components of the phase interaction function H .
Approach ω a1 b1 a2 b2
Reductive perturbation 0.701 −0.9505 1.1555 −0.0001 0.0013
Nonlinear transform 0.701 −0.9457 1.1382 −0.0009 0.0013
Direct averaging 0.701 −0.6940 0.2140 – –
Numerical/adjoint 0.701 −0.0472 0.3843 −0.0001 0.0002

Table B.6
Phase models derived with different reduction techniques very close to the Hopf bifurcation (µ = 0.0013). The oscillators’ natural frequency is ω,
and an, bn are the amplitudes of the Fourier components of the phase interaction function H .
Approach ω a1 b1 a2 b2
Reductive perturbation 0.701 −0.9505 1.1555 −0.0039 0.0013
Nonlinear transform 0.701 −0.9302 1.0830 −0.0038 0.0055
Direct averaging 0.701 −0.6886 0.2143 – –
Numerical/adjoint 0.701 −0.3824 −0.1601 −0.0018 −0.0006

Table B.7
Phase models derived with different reduction techniques away from the Hopf bifurcation (µ = 0.1663). The oscillators’ natural frequency is ω, and
an, bn are the amplitudes of the Fourier components of the phase interaction function H .
Approach ω a1 b1 a2 b2
Reductive perturbation 0.728 −0.9505 1.1555 −0.2470 0.3657
Nonlinear transform 1.023 −0.4905 0.1383 −0.0604 0.0503
Direct averaging 1.330 −0.4733 0.2390 – –
Numerical/adjoint 0.939 −0.4447 −0.2668 −0.0635 −0.0451

Table B.8
Phase models derived for different approaches at Pk = 3,Qk = 9.38.
Approach ω a1 b1 a2 b2
Reductive perturbation 1.800 −0.3666 0.0251 −0.0006 0.0015
Nonlinear transform 1.800 −0.3675 0.0260 −0.0006 0.0015
Direct averaging 1.800 −0.1280 0.5739 – –
Numerical/adjoint 1.800 −0.0413 0.0339 −0.0002 −0.0001

Table B.9
Phase models derived for different approaches at Pk = 3,Qk = 8.9.
Approach ω a1 b1 a2 b2
Reductive perturbation 1.276 −0.3666 0.0251 −0.0381 0.0868
Nonlinear transform 1.263 −0.4592 0.0908 −0.0194 0.0562
Direct averaging 1.276 −0.2283 0.4600 – –
Numerical/adjoint 1.267 −0.4436 −0.1244 −0.0077 −0.0184

Table B.10
Phase models derived for different approaches at Pk = 3,Qk = 8.7.
Approach ω a1 b1 a2 b2
Reductive perturbation 1.078 −0.3666 0.0251 −0.0522 0.1187
Nonlinear transform 1.079 −0.4945 0.1217 −0.0191 0.0574
Direct averaging 1.078 −0.2649 0.4245 – –
Numerical/adjoint 1.062 −0.5877 −0.2324 −0.0304 0.0135

Predicting collective behavior. For Fig. 9.7, we considered a slightly different set of parameters

aE = 1, aI = 1, cEE = cEI = cIE = 10, cII = −2,ΘE = 0

which had been considered already by Hoppensteadt and Izhikevich [46], and employed by Hlinka and Coombes [168],
so that we can refrain from computing a detailed bifurcation diagram, but refer to the literature. We consider Pk and Qk
as bifurcation parameters, as mentioned above.

The numerical phase reduction technique predicts correctly the stability of the globally synchronized for parameters
(Pk,Qk) = (−3,−9.38), of the incoherent state for parameters (Pk,Qk) = (−3,−8.9), and of the balanced two-cluster
state for parameters (Pk,Qk) = (−3,−8.7). The numerical values of the Fourier coefficients of the numerically reduced
phase interaction function H are given in Tables B.8–B.10, respectively, together with those derived along the analytic
phase reduction techniques.
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The corresponding network simulations for Fig. 9.7 of N = 30 globally coupled, identical Wilson–Cowan neural masses
were initialized by choosing initial conditions on the uncoupled limit cycle such that the phase synchronization (real-
valued Kuramoto order-parameter) was R = 0.15. The dynamics (B.2.1) was simulated with the parameter values above
and coupling strength κ = 0.15 using an Euler–Maruyama scheme over T = 1000 s (T = 5000 for panels b and c),
respectively, with step size dt = 0.001 s and noise strength σ = 10−8.
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