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Glossary

Neural spikes Discrete events as proxy for action
potentials in single neurons.

Firing rate Population activity measured at each
instant in time as the fraction of neurons that
fire a spike within a certain time window.

Membrane potential Common state variable of
a single neuron that induces a spike/an action
potential once it has crossed a certain threshold.

Stable limit cycle A periodic orbit along which
rhythmic activity emerges and that attracts all
neighboring trajectories in its vicinity.

Neural oscillator A single neuron, a population
of similar neurons, or a pair of excitatory and
inhibitory neural populations that exhibit rhyth-
mic activity.

Phase oscillator Reduced description of an
oscillator with sole focus on the evolution of
its phase.

Phase reduction Technique to identify the state of
a (high-dimensional) oscillator through its phase
on or in the immediate vicinity of the stable limit
cycle.

Order parameters Common variables describ-
ing the (dis)order of a large system of many
components.

Neural mass model Description of a neural pop-
ulation by means of its density, often parame-
trized by the mean and/or variance.

Definition of the Subject

Oscillatory neural activity is abound on all tem-
poral and spatial scales. One can observe this on
the microscopic level of neuronal circuits as well
as on mesoscopic and macroscopic levels of neu-
ral populations. The latter give rise to brain
rhythms that, dependent on their spectral proper-
ties, adhere to different function. A disruption of
the interplay of this oscillatory activity is often
deemed a signature of pathology (Schnitzler and
Gross 2005; Uhlhaas and Singer 2006; Hutt and
Buhry 2014). All the more it is important to
understand the underlying mechanisms how
these neural oscillations emerge and evolve and
how oscillations of different populations interact
and influence each other. Synchronous firing of
individual neurons can give rise to large-scale
oscillatory activity of a population, and the
phase synchronization between populations is
key for communication between them.
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Introduction

The functioning of the brain dwells on coordi-
nated and coherent coactivity of a multitude of
neurons. Perceptual, cognitive, and motor func-
tions are believed to require an orchestration of
distributed neuronal processes. If spike dis-
charges of a large number of neurons exhibit
correlated behavior in different areas of the
brain, their (large-scale) integration allows for
sensory integration, the generation of motor
commands, and cognitive processing.
Unraveling these integration processes poses a
challenge in itself and is often referred to as the
binding problem (Singer 2007). Binding by con-
vergence results in the grouping of specialized
neurons that encode a particular fixed constella-
tion of contextual features. Dynamic binding, by
contrast, assembles individual neurons dynami-
cally to generate and represent particular patterns
at particular points in time (Nunez 2000).
A neuron can participate in the representation
of one pattern in one moment, but an instant
later, it is involved in encoding another one.
Synchronization of neuronal discharges at milli-
second scale can yield sequences of subse-
quently active assemblies, which can effectively
encode complex information to be exchanged
among neuronal networks. And, this temporal
organization of neuronal activity capitalizes on
self-organized information retention and local-
global integration. The ability to preserve and
store information is equally important as inte-
grating distributed local processes into globally
ordered states and controlling local computations
through global brain activity. Both are likely
maintained by a hierarchy of brain rhythms
(Buzsaki 2006). The temporal coordination of
distributed brain activity, hence, strongly – if
not solely – relies on the synchronization of
neural oscillations (Gray 1994; MacKay 1997).

On macroscopic scales, brain rhythms and
oscillatory population activity are the dominant
observables. There are numerous approaches to
unravel the orchestration of intertwined neural pro-
cesses, both experimental and theoretical. Bridging
the gap between experiments and theory, however,
has only been achieved in very restrictive cases and

mainly on very small spatial and temporal scales.
An overall and generic picture linking these two
sides of the same coin is still being sought for.
Neuroimaging techniques such as magneto- and
electroencephalography (M/EEG) reflect voltage
fluctuations resulting from ionic currents in the
neurons. Given the noninvasive nature of these
techniques, the recorded data display synchronous
activity of several thousands of interacting neurons
rather than the dynamics of a single neuron. The
population dynamics, or mean field behavior, has
often very little in common with what happens on
the microscopic scale.

An urgent challenge in theoretical neurosci-
ence is to deduce macroscopic dynamics from
activity on these much smaller scales (Haken
2006; Deco et al. 2008; Coombes 2010; Siettos
and Starke 2016; Breakspear 2017). Yet, the plen-
itude of findings provide valuable guidelines for
our understanding of neural synchronization pro-
cesses on both micro- and macroscopic scales; see
Fig. 1 for an example.

Micro- and Macroscopic Views

When characterized as rhythmic changes in, e.g.,
local field potentials, neural oscillations set a
recurrent temporal reference frame. The ups and
downs in fluctuating local field potentials reflect
high and low degrees of synchronization of neu-
ronal currents within a certain brain area. That is
why synchronization and neural oscillations are
often used interchangeably to express coherent
activity of a population of neurons. However,
there is a subtle difference between the two phe-
nomena (Singer 1993). Oscillatory activity can be
induced on a population level through single
oscillatory neurons, so-called pacemaker cells. It
may also manifest as an emergent property of the
underlying network architecture when a particular
dynamic circuit motif is activated. Such a motif
comprises the physical circuit structure, its elec-
trophysiological signature, and the corresponding
computational function (Womelsdorf et al. 2014).
Synchronization, on the other hand, can also
occur in the absence of oscillations. Two cells
may always discharge simultaneously but at
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irregular intervals when driven by common noise.
Or, a presented stimulus induces simultaneous
bursting of neural populations. This is a typical
signature of response synchronization. Synchro-
nization may lead to oscillations, and oscillations
may facilitate synchronization, but, in general,
they are “just” indicative for synchrony.

While oscillatory population activity can be
related to synchronous interactions of individual
cells – we provide an example below – one must

be careful when relating single cell responses to
synchronous network activity. There is a micro-
macro dichotomy with respect to the transition
from individual neuronal dynamics to the collec-
tive behavior of a neural population. It may hap-
pen that individual discharges of a neuron are
perfectly time-locked with the oscillating field
potential while, e.g., the lagged autocorrelation
of the discharges does not show any sign of oscil-
latory activity. The seminal work by Brunel and
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Phase Synchronization in Neural Systems,
Fig. 1 Beta-range oscillatory activity measured via EEG
over (here left) motor cortex and beta synchrony between
cortex and spinal cord are up- or downregulated in antici-
pation of movement initiation. The temporal changes in
local synchronization in motor cortex (top right panel:
spectral power around 15–30 Hz) reflect a precision grip
being produced with the right hand that ought to be

changed after receiving a go-signal (lower right panel:
force level). The corticospinal synchronization (middle
right panel: phase synchronization between EEG-
electromyographic signals of finger and thumb flexors)
also follows that pattern although pre-cueing (cue-signal)
2 s ahead of movement initiation is seemingly not propa-
gated along the corticospinal tract; see Van Wijk et al.
(2008) for more details.
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Hakim offered a theoretical account of a collec-
tion of experimental studies hinting at sparse syn-
chronization of neuronal networks (Brunel and
Hakim 1999). By contrast, regular spiking activity
of single neurons does not necessarily result in
(regular) oscillations on the population level but
may yield collective chaos (Pazó and Montbrió
2016). Likewise, asynchronous network states
may emerge despite a considerable amount of
shared input (Renart et al. 2010).

Correlated Behavior and Phase
Synchronization

Discernible neural population activity depends on
correlated activity of a large number of neurons
(Wang 2010). When considering time series of
experimental or synthetic data, synchronization
can be identified through a variety of measures.
They range from correlation coefficients to coher-
ence, from phase coherence to Granger causality,
from phase locking values to Kullback-Leibler
information divergence, and from state space-
based measures to stochastic event synchrony
(Dauwels et al. 2010). Some of these measures
show a strong correlation among one another,
whereas others do not, but all of them have in
common that they seek to quantify the degree to
which firing rates of neurons are related (Golomb
2007).

When it comes to neural oscillations, focus is
on the oscillations’ amplitudes and frequencies.
For a given frequency, one can define the period as
the duration of time of one cycle of oscillation. In
between a cycle, one can further define the phase
of oscillation, which continuously increases
between 0 and 2p. Phase and amplitude thus
become the main (time-resolved) determinants of
the state of oscillation. Phase synchronization
measures aim at quantifying the closeness of the
phases when mapped on the unit circle (Jean-
Philippe et al. 1999). Phase synchronization mea-
sures are particularly suited for cases in which
oscillatory units are weakly coupled because in
that case dynamically changing amplitudes can be
largely ignored. In the following, we concentrate
on such cases. As we will show, phase

synchronization is paramount for functional con-
nectivity of the brain and communication between
neural populations in general (Varela et al. 2001;
Sauseng and Klimesch 2008; Thut et al. 2012).

From Single Cell Dynamics to Neural
Masses: Synchronization in a Neural
Population

A plethora of modeling approaches exists to link
single cell dynamics to the dynamics of neural
populations. Modeling boomed in the 1970s. It
was Walter Freeman who introduced the notion of
neural mass models, which are in essence descrip-
tions of the dynamics of neural population densi-
ties (Deco et al. 2008; Freeman 1975). Many of
these models are arguably heuristic in nature
(Lopes da Silva et al. 1974; Amari 1977; Jansen
and Rit 1995) and/or involve debatable approxi-
mations. Here we illustrate a proper deduction of
population or neural mass dynamics starting at a
well-defined single cell level.

We follow a recent study by Montbrió et al.
(2015) and consider a large population of identical
quadratic integrate-and-fire (QIF) neurons with
the ultimate goal to derive the dynamics of the
population’s mean membrane potential V. The
neurons are coupled with each other electrically
via gap junctions of strength G and/or through
chemical synapses of strength J with activation
function S, as detailed below. We denote the indi-
vidual membrane potentials by vj with j = 1,. . .,
N � 1 and assume that they follow the dynamics

t _vj ¼ v2j þ nj þ G V � vj
� �þ JtS, ð1aÞ

where t represents the membranes’ time constant
and �j is an external input current flowing into
neuron j. To model action potentials, or spikes, as
sketched in Fig. 2 (upper panel), the continuous
dynamics (1a) is accompanied by the following
discrete fire and reset rule:
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if vj reaches þ1 then neuron j emits a spike

and its membrane potential vj resets to�1:

ð1bÞ

In the absence of any coupling between neu-
rons, i.e., if J=G= 0 holds, the neurons are either
quiescent or oscillate dependent on their individ-
ual, external input �j < 0 or �j > 0, respectively.
More realistic, however, is the case in which the
neurons are coupled to one another (Pietras et al.

2019). For coupling through chemical synapses,
we adopt an obvious synaptic activation function

S tð Þ ¼ 1

N

XN
j¼1

1

tS

ðt
t�ts

X
k

d t0 � tkj

� �
dt0 ð1cÞ

i.e., a summation of incoming spikes; tkj denotes

the time of the k-th Dirac delta-spike of the j-th
neuron and tS is a synaptic time constant. The
synaptic strength J can be positive or negative

Phase Synchronization in Neural Systems,
Fig. 2 Simulated spike trains of a population of 100 neu-
rons (upper panel). At the beginning, spikes are emitted
randomly causing the resulting mean-field potential (~local
field potential) to weakly fluctuate around the resting
potential of about �70 mV (lower panel). At around
100 ms, the neurons spontaneously synchronize their
phases yielding a mean membrane potential that oscillates
at about 100 Hz. The frequencies in local field potentials
are usually higher than those observed in encephalographic
recordings – cf. Fig. 1. To generate the figure, we used a
stochastic extension of the Kuramoto model (7) and

defined spike events via Poincaré sections of the phase
oscillators’ trajectories (Deschle et al. 2019). At around
t � 90 ms, the coupling strengths k was increased beyond
the critical value kc, and, after a brief transient period, the
population fires in synchrony at a rate given by the mean of
the oscillators natural frequencies. Note that the mean
membrane potential simply resembles the population den-
sity of spikes as a function of time, here adjusted to mimic
standard values of action and reversal potentials (Kandel
et al. 2013). The figure was inspired by Masquelier
et al. (2009).
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implying the chemical synapses are excitatory or
inhibitory, respectively. For electric coupling, we
assume that it is diffusively modulated by the
population’s mean membrane voltage

V ¼ 1

N

XN
j¼1

vj: ð1dÞ

As it will turn out, electrical coupling tends to
balance the membrane potentials vj and may,
hence, facilitate synchronization between neurons.
Yet, if a sufficiently large portion of neurons in the
population is inactive, gap junctions can suppress
oscillations and desynchronize neuronal activities
(Connors 2017; Alcamí and Pereda 2019).

Following Montbrió et al. (2015) and Luke
et al. (2013), we consider the thermodynamic
limit N ! 1 and define a density function r
such that r(v|�, t) dv denotes the fraction of neu-
rons with membrane potentials between v and
v + dv at time t and external current �. For the
sake of simplicity, we consider the external cur-
rents to be distributed according to a Lorentzian
D
p = � � �ð Þ2 þ D2

h i
centered around � with half-

width D.
We further assume a clear separation of time

scales in that the time scale of synaptic processing
is much smaller than that of the membrane poten-
tials. In fact, in the limit tS ! 0, the synaptic
interaction (1c) reduces to S(t) = R(t) with R(t)
being the population’s mean firing rate. At first
glance, assuming instantaneous synaptic
responses appears a limitation to our model since
synaptic time scales are often considered to be
longer than those of the cell membrane. However,
synaptic time constants can be as small as 1.7 ms
(Häusser and Roth 1997), much in the range of
typical time scales of the membrane dynamics,
which renders our approximation acceptable.
Introducing finite time scales, e.g., via exponen-
tial or a synapse, can be realized by using the
corresponding Green’s functions (Haken 2006;
Byrne et al. 2017). Effectively, this will cause a
synaptic delay enriching the dynamical spectrum
by far; see Devalle et al. (2018) for details. Here,
however, we seek to highlight the effects of

electric couplings as in our model they turn out
to be the major ingredient for the emergence of
neural oscillations.

All things considered, we find that the mean-
field dynamics of the population of electrically
and chemically coupled QIF neurons evolves
according to

t _R ¼ D
tp

þ 2RV � GR,

t _V ¼ V2 þ � � ptRð Þ2 þ JtR:
ð2Þ

The common variables R and V are the already
introduced mean firing rate and mean membrane
potential of the population, respectively. Together
they determine the total time-dependent voltage
density of the population Eq. (1), which turns out
to be a Lorentzian tr(t)/{[v � V(t)]2 + [ptR(t)]2}
centered at V(t) with half-width ptR(t). Electrical
coupling leads to a narrowing of the voltage dis-
tribution r by decreasing the firing rate R as in (2).
That is, it balances the neurons’membrane poten-
tials and may promote synchrony, leading to their
synchronized firing activity as anticipated before,
and oscillations of the population firing rate can
emerge. By contrast, chemical coupling merely
shifts r through the voltage dynamics in (2). Fig-
ure 3 briefly summarizes the corresponding bifur-
cation scheme, but we refer to Montbrió et al.
(2015) and Pietras et al. (2019) for the in-depth
analysis.

Writing about neural mass modeling must not
let the neural mass model by Wilson and Cowan
(1972, 1973) be unnoticed. Like the neural mass
model (2), it provides a comprehensive link
toward a macroscopic description of the afore-
mentioned cell assemblies (Kilpatrick 2015).
The Wilson-Cowan neural mass model represents
the interdependent collective neuronal dynamics
in terms of the mean firing rates of the excitatory
and inhibitory parts of the population, i.e.,
R ! (E, I). It exhibits rich dynamic behavior as
well as different transitions to oscillatory dynam-
ics (Hoppensteadt and Izhikevich 1997; Borisyuk
and Kirillov 1992). This makes it also exemplary
for a neural oscillator model.Wewill exploit some
of these features when addressing coupled neural
masses in the parts to come.
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We consider Ne excitatory and Ni inhibitory
neurons and denote by en and in the firing rate of
a single excitatory and inhibitory neuron, respec-
tively. The respective mean firing rates can be
given by the averages E ¼ 1

Ne

PNe

n¼1en and I ¼
1
Ni

PNi

n¼1in . Every neuron receives inputs from all

other neurons within the population and every
excitatory neuron receives an external input �j,
whose average is given by � ¼ 1

Ne

PNe

n¼1�n. Once
the sum of all inputs exceeds a certain threshold
yn, a neuron elicits a spike. For a particular distri-
bution of threshold values across the population,
one can assign a sigmoidal activation function
S x½ � ¼ 1= 1þ e�xð Þ with population-specific
threshold values by YE and YI for the excitatory
and inhibitory part, respectively. Then, the popu-
lation dynamics follows

tE _E ¼ �E tð Þ þ 1� rEE½ ��
�S aE cEEE� cIEI �YE þ �ð Þ½ �

tI _I ¼ �I tð Þ þ 1� rII½ ��
�S aI cEIE tð Þ � cII I �YIð Þ½ �,

ð3Þ

with ckj with k, j � {E, I} indicating the strength
of interaction between the different parts within
the population, and aE, aI define the slopes of the
transfer function. The expressions [1 – rEE] and
[1 – rII] represent the refractory dynamics of the
excitatory and inhibitory subpopulations, respec-
tively, that we here ignore by setting rE = rI = 0
(Pinto et al. 1996). Like model (2) also the dynam-
ics (3) can exhibit self-sustained oscillations and
multi-stability (Wilson and Cowan 1972;
Hoppensteadt and Izhikevich 1997; Borisyuk
and Kirillov 1992); the bifurcation diagram is
depicted in Fig. 4.

Synchronization Between Neural
Populations: Coupled Neural Masses

The Wilson-Cowan model may be considered a
generic description of a densely connected neural
population as in a particular cortical region
(Breakspear 2017; Daffertshofer and van Wijk
2011). Hence we use it to build a cortical network
model. For this, we connect N different
populations of excitatory and inhibitory neurons
in a region (Ej, Ij) via their excitatory parts
(Daffertshofer and van Wijk 2011; Schuster and
Wagner 1990; Daffertshofer et al. 2018) – this
creates a network of j = 1,. . ., N nodes; see
Fig. 5 for illustration.

In line with (3), we assume the locally aver-
aged fire rates at every node to obey the dynamics

tE _Ej ¼ Ej þ S aE½ cEEEj � cIEIj �YE

� þ �jþ

þ k
N

XN
k¼1

Cjk Ek � E0
k

� �!#

tI _Ij ¼ �Ij þ S aI cEIEj � cII Ij �YI

� �� �
,

ð4Þ

where E0
k is the unstable fixed point solution of

neural mass (Ek, Ik) in the absence of coupling.
Importantly, 0 � k � 1 denotes the overall cou-
pling strength, C = {Cjk} is an adjacency matrix
resembling structural connectivity between
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0
–2 0 2
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SNSL
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Fig. 3 Bifurcation diagram of the dynamics (2) for elec-
trical coupling only (J= 0) is characterized by the presence
of codimension-2 points (TB Takens-Bogdanov; SNSL
saddle-node separatrix loop, Cusp) at � 	 0 . The region
of synchronization, i.e., oscillatory population activity, is
limited by supercritical Hopf (red), SNIC (black), and
homoclinic (green) bifurcations. Inset: Enlargement of the
region near the three codimension-2 points. SN – saddle-
node bifurcation; see Pietras et al. (2019) for details
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cortical regions (j, k) = 1,. . ., N, and the popula-
tion specific average input fjjmay differ across the
different cortical regions.

Limit-cycle oscillations emerge in general
through a bifurcation, which – and also whose
type – can be revealed by looking at the

h–

Phase Synchronization in Neural Systems,
Fig. 4 Bifurcation diagram of the uncoupled Wilson-
Cowan model (4). By increasing �, one can identify four
different dynamical regimes (see insets) that are separated
by bifurcation boundaries; filled/empty dots, stable/unsta-
ble fixed points; red, stable limit cycle. In the lower right

inset, the limit cycle is the unique attractor of the dynamics.
SN saddle-node bifurcation, HB Hopf bifurcation, HC
homoclinic bifurcation, BT Bogdanov-Takens point, CP
cusp point, SNL saddle-node loop bifurcation, SNIC saddle
node on invariant cycle bifurcation; see Pietras and
Daffertshofer (2019) for more details
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IN-2
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h–1 h–2 h–3 h–N–2 N–1 Nh– h–
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Fig. 5 Network of coupled Wilson-Cowan neural masses.
Each neural population k contains excitatory and inhibitory
units (Ej and Ij), which are internally coupled with
strengths cnm, n, m � {E, I}. The populations receive

external inputs �j . Interaction between two neural masses
j, k occurs via their respective excitatory parts only, where
Cjk denotes the connectivity whether node j receives input
from node k.

8 Phase Synchronization in Neural Systems



eigenspectrum of the linearized dynamics. In the
case of a Hopf bifurcation, oscillatory dynamics
evolve on a stable limit cycle around an unstable
fixed point. We therefore expect that for an
uncoupled (Ej, Ij) node, the Jacobian of the
Wilson-Cowan dynamics (4) evaluated at the
unstable fixed point (E0

j , I
0
j ) has a pair of complex

conjugate eigenvalues with negative real part,
which corresponds to the distance m≔�j � �H to
the Hopf bifurcation point. One typically
expresses the dynamics in terms of the deviations

xj ¼ Ej � E0
j mð Þ, Ij � I0j mð Þ

� �
around the unsta-

ble fixed points. Approximating the sigmoidal
activation function S up to third order and apply-
ing some laborious algebraic transforms (Pietras
and Daffertshofer 2019), one can derive a fairly
generic form of the dynamics (4) that reads

_xj ¼ Lxj þ T�1f Txj; m
� �þ

þkT�1
XN
k¼1

g Txj,Txk
� �

:
ð5Þ

Here L is the Jordan real form of the dynamics’
Jacobian J, T the matrix containing the eigenvec-
tors of J. The function f includes all components
within node j that contribute to its dynamical
change, and g covers all the between-node inter-
action, i.e., the last term of the right-hand side of
the _Ej dynamics in (4) now given as coupling
between the nodes xj and xk. The dynamics (5)
exhibits qualitatively the same behavior as (4), but
due to the Jordan real form, a circular symmetry of
the limit cycle is imposed on the full dynamics.

In the immediate vicinity of the Hopf bifurca-
tion point, one can exploit the separation of time
scales of phase and amplitude dynamics and read-
ily transform (5) into xj = (xj, yj) = (Rj cos(yj), Rj

sin(yj)), where Rj and yj = Ot + fj are amplitude
and phase (deviations) of the oscillations at node j,
which are slowly varying with respect to the
(mean) frequency O (Haken 2004), here defined
over the eigenvalues at the Hopf point, O = o(0).
Near the onset of oscillations through a supercrit-
ical Hopf bifurcation, Rj � 1 is small and, thus,
the right-hand side of (5) is at least of order O Rj

� �
.

Given the slower time scales of Rj and fj = yj –

Ot, one can average over one cycle T = 2p/O. In
line with Daffertshofer et al. (2018), this direct
averaging of the dynamics (5) yields the phase
model

_yj ¼ oj þ
XN
k¼1

Djk sin yk � yj þ Djk

� � ð6Þ

with coupling Djk ¼ k
2N aES

0
ELjCjk Rk=Rj

� �
and

finite phase lag Djk = arctan(rj) – Otjk. Here we
abbreviated L2

j ¼ 1þ r2j with rj ¼
k
oj

aEcEES
0
E þ aIcIIS

0
I

� �
as well as oj ¼

aEaIcIEcEIS
0
ES

0
I � 1

4
aEcEES

0
E þ aIcIIS

0
I

� �2
; and,

S0E=I denotes the first derivative of sigmoid S

evaluated at the fixed points E0
j =I

0
j of (4). We

would like to note that we included some time
delays tjk between nodes xj and xk in the coupling
function g(xj, xk)! g(xj(t), xk(t – tkj)); see Pietras
and Daffertshofer (2019) and Daffertshofer et al.
(2018) for more details. The dynamics (6) resem-
bles the Kuramoto-Sakaguchi model with phase
lag Djk

�� �� � p
2
.

Importantly, a transition to full synchronization
occurs if the coupling strength k exceeds a critical
value kc as illustrated in Fig. 6. There we used the
case in which the dynamics can be rewritten as

_yj ¼ oj þ k
N

XN
k¼1

sin yk � yj
� � ð7Þ

which, in fact, is the seminal Kuramoto model
(Kuramoto 1984); see also below.

Using more general phase reduction tech-
niques may generate phase oscillator models that
contain higher harmonics (Pietras and
Daffertshofer 2019). The absence of higher har-
monics hampers, e.g., clustering effects. In any
case, however, the network dynamics of (weakly)
coupled Wilson-Cowan neural masses can be
expressed in terms of a corresponding phase
model

Phase Synchronization in Neural Systems 9



_yj ¼ oj þ k
N

XN
k¼1

CjkH yj � yk
� �

, ð8Þ

r1 ¼ r t ! 1ð Þ

¼ 0 fork < 2D,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D

k

r
otherwise

( )
:

where the phase interaction function H(c) admits
a “simple” representation as a Fourier series

H cð Þ ¼
X
n	0

an cos ncð Þ þ bn sin ncð Þ: ð9Þ

With such an expression at hand, one can seek
to estimate the Fourier amplitudes an, bn that
readily provide crucial information about global
synchronization of the full neural network or
whether clustering of only a subset of network
nodes occurs; see Pietras and Daffertshofer
(2019) for more details.

Predicting Effects of Phase
Synchronization

Mathematical theory and computational modeling
go hand in hand with experimental neuroscientific
research. Modeling helps to unravel the mecha-
nisms underlying complex behavior. Not only can
it provide proper and robust quantitative descrip-
tions, but it also helps to formulate hypotheses and
predict future outcome of experimental research.
Many physiologically motivated neuronal models
have been put forward to investigate synchroniza-
tion properties in neural systems. Given their
inherent complexity, a thorough analysis can be
challenging even despite ever-increasing compu-
tational capacities. In some cases, the dynamics of
neural systems can be simplified to coupled phase
oscillators models, which often takes on a modi-
fied form of a network of seminal Kuramoto oscil-
lators (7) (Daffertshofer and van Wijk 2011;
Schuster and Wagner 1990; Rodrigues et al.
2016; Breakspear et al. 2010; Ton et al. 2014;
Cabral et al. 2014; Tasseff et al. 2014; Sadilek
and Thurner 2015; Schmidt et al. 2015). For the
Kuramoto model, there exists a rigorous theory to
describe the state of the network with very few
macroscopic variables. Following either the
Watanabe-Strogatz (Watanabe and Strogatz
1994) or the Ott-Antonsen theory (Ott and
Antonsen 2008), the time evolution of these mac-
roscopic variables can be derived exactly under
some quite generic conditions. It thus becomes
possible to study low-dimensional behavior of
the collective dynamics in a straightforward way.

We use the Kuramoto model to illustrate this.
In brief, given the model (7) of a population of
phase oscillators yj with j = 1,. . ., N, one intro-
duces the Kuramoto order parameter (Kuramoto
1984)

z ¼ 1

N

XN
j¼1

eiyj ð10Þ

to describe the population’s common dynamics.
This order parameter can be expressed via the
population density p(y, t;o). The density contains
both frequencies and phases p(y, t; o)= q(o) f(y,

Phase Synchronization in Neural Systems,
Fig. 6 Phase oscillators and phase synchronization. The
distribution of phases yj of the neural oscillators is plotted
as points eiyj on the complex unit circle for increasing
coupling strength k. Their average over the population is
the Kuramoto order parameter z, shown within the unit
circle (top panels from left to right). The phase divergence
r = |z| describes the degree of synchronization and
undergoes a pitchfork bifurcation from asynchrony,
r1= 0, to partial synchrony, r1> 0, at a critical coupling
strength kc = 2D, with D being the half-width of the
(Lorentzian) density of the oscillators’ natural frequencies;
see also Kuramoto (1984). Lower panel shows the asymp-
totic solution of (12) that reads
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t; o), where the phase density, in general, has the
Fourier series f y, t;oð Þ ¼ 1

2p

P1
n¼�1f n t;oð Þeiny .

Substituting this into (7) motivates the ansatz
fn = a|n| with a = f1 = z
. Considering a
Lorentzian frequency density q oð Þ ¼
D
p = o� o0ð Þ2 þ D2

h i
, the exact solution of (7)

for N ! 1 yields the order parameter dynamics

_z ¼ io0 � Dþ k
2

� �
z� k

2
zj j2z: ð11Þ

Accordingly, the phase divergence r = |z|
follows the well-established equation of motion

_r ¼ � D� k
2

� �
r� k

2
r3 ð12Þ

while the mean phase c= ∢ (z) follows _c ¼ o0.
The explicit solution of (12) can be given by

r tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D� k
2

D� k
2
1� r20
� �� �

e 2D�kð Þt � k
2
r20

r0

s
ð13Þ

quantifying (one minus) the width of the density
of phases

f y, t;oð Þ ¼ 1� r2

1� 2r cos yþ r2
: ð14Þ

Hence, for some initial condition r0, the
dynamics’ relaxation time becomes

t ¼ 1

2D� k
ln

2Dþ k r2t � 1
� �

2Dþ k r20 � 1
� � � r20

r2t

" #
ð15Þ

with r(t) = rt. The value rt can be determined
using the asymptotic solution as we set rt= r0 – g
(r0 – r1) with, e.g., g = 99.9%.

Many studies speculated about the relevance of
the (finite) time it takes for a population of neural
oscillators to approach synchrony or to
desynchronize, often in the context of the binding
problem outlined in the introductory paragraph.
Already by looking at Fig. 2, it becomes apparent

that the local field potential of a group of neurons
can only be of significant value if their phase
density is sufficiently narrow. At larger scale,
classic experimental paradigms for investigating
relaxation times of phase synchronization involve
event- or moton-related responses as sketched in
Fig. 7.

Final Notes

Phase oscillator models help to explain how
changes in the local dynamics affect functional
connectivity, how neural synchronization can be
achieved, and how functional clusters or modules
are generated through remote synchronization.
These models have also been used to investigate
the interplay between structure (anatomy) and
function, including effects of cortical lesions on
the overall brain dynamics (Honey and Sporns
2008; Vása et al. 2015). Given their mathematical
ease, they are particularly suited to explore the
emergence of (de-)synchronized states per se and
the corresponding relationship between them, but
also to tackle even more generic characteristics
such as self-organized criticality.

The use of phase oscillator models, however, is
not without a risk: the reduction of a (network)
dynamics to a phase oscillator model requires great
care (Pietras and Daffertshofer 2019). Any
(heuristic) approximation of an oscillatory neural
network via a network of phase oscillators has to
withstand comparison with the “original” dynamics
and starting-off with “just” the phase oscillator net-
work may lose contact with biophysical or physio-
logical reality.

Summary

Rhythmic behavior of a neural population implies
an oscillatory dynamics of one or more macro-
scopic variables. The corresponding phase space
exhibits a limit cycle that, if stable, attracts the
population dynamics. If this attraction is
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sufficiently fast, the dynamics away from the limit
cycle can be approximated by the dynamics on the
limit cycle. We illustrated this for the case of a
single population. In such a case, the high-
dimensional dynamics of neuronal oscillators can
be uniquely identified by a one-dimensional phase
variable. The phase reduction becomes especially
useful when studying a network of interacting

neural oscillators as we showed for the case of
coupled Wilson-Cowan neural mass models. The
resulting phase models can, in general, be analyzed
along well-established techniques for networks of
coupled phase oscillators. The resulting findings on
synchronization properties can mimic oscillatory
activity in neural masses as observed in experi-
ments. They also help understanding effects of
changes in synchronization for the macroscopic
functioning of the nervous system.
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