
Chapter 3
Reduced Phase Models of Oscillatory
Neural Networks

Bastian Pietras and Andreas Daffertshofer

Abstract Phase reduction facilitates the analysis of networks of (weakly) cou-
pled oscillators. Synchronization regions can be uncovered and also non-trivial net-
work behavior can be foreseen via the reduced phase dynamics. Phase models have
become an essential tool for describing and analyzing rhythmic neural activity. It is
widely accepted that in oscillatory neural networks, phase synchronization is crucial
for information processing and information routing. Accurately deriving the phase
dynamics of interacting neural oscillators is far from trivial.We demonstrate how dif-
ferent reduction techniques of a network of interactingWilson-Cowan neural masses
can lead to different dynamics of the reduced networks of phase oscillators. We pin-
point caveats and sensitive issues in the derivation of the phase dynamics and show
that an accurately derived phase model properly captures the collective dynamics.
We finally investigate the influence of strong interactions and biologically plausible
connectivity structures on the network behavior.

3.1 Introduction

Oscillatory behavior abounds across many different scales of the human brain
[17, 18, 80]. To trace and describe these neural oscillations, the development and
design of recording techniques and models have benefitted from mutual interaction
between experimental and theoretical neuroscientists. Still, linking recordings of
brain activity to the underlying neuronal mechanisms remains an urgent challenge.
A promising approach to model large-scale brain dynamics builds on networks of
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interacting neural oscillators. By focusing on the corresponding phase dynamics, it
is possible to analyze synchronization properties of the network.

As revealed by a plethora of experimental studies relying on both invasive and non-
invasive neuroimaging techniques, information processing in the brain is intrinsically
linked to synchronization phenomena of oscillatory dynamics [37, 55]. Non-invasive
EEG and MEG studies typically depict distributed cortical activity as of large-scale
brain networks. Although M/EEG recordings have high temporal resolution, they
reflect activity on rather coarse spatial scales given that signals to be perceivable
require synchronous neuronal currents of a large number of neurons, commonly of
the order of 104 to 105 cells. The resulting time series of the recordings are duly and
extensively analyzed for their extracted phase and amplitude dynamics. Emerging
synchronization patterns in the data are then assigned to particular brain functions
corresponding to the underlying hypothesis or the behavioral observations. Research
on the phase dynamics of cortical oscillatory activity is rather recent compared to
amplitude modulations in the M/EEG. However, there are several reports indicating
that the phase dynamics play a crucial role for information processing and inter-
cortical communication [22, 64, 74, 75, 82, 84].

Phase synchronization also plays an integral part in defining functional connec-
tivity structures of the brain. The technological advance of modern brain imaging
methods has led to elucidate the interplay of structural and functional brain connec-
tivity. The structure of anatomical connections between brain areas iswidely believed
to facilitate temporal synchronization of neural activity, and can lead to spatial pat-
terns of functional connectivity [9, 15, 24, 48]. Yet, the extent to which structure
shapes function is still unclear [36, 44]. To unveil functional brain connectivity and
communication pathways [10, 33, 54], it is crucial to identify functional modules
consisting of remote but synchronized neuronal populations. This can be achieved
by analyzing the phase dynamics of the different brain areas.

While extensive data analysis may establish important synchronization properties
across the human brain, a comprehensive understanding of the underlying neural
mechanisms also requires theoretical models that can be validated and tested against
experimental data. Often, heuristic phase models are used as guidelines for inferring
neural network dynamics fromdata. Butwithout a proper derivation of these heuristic
models, the results may become questionable. Phase reduction [32, 35, 45, 46, 51,
60, 67, 77] provides a powerful tool to derive phase models from biophysiologically
realistic models and to link parameters from the more complex with those from the
simplermodel in order to identify the key factors for a particular behavioral paradigm.
Unfortunately, there is not “the” phase reduction, but one has to choose from a
variety of techniques – a recent review can be found in [67]. Even worse, different
phase reductions can lead to qualitatively different phase models, that is, reduced
phase models may predict different network behavior. For an accurate derivation of
a phase model, reduction techniques have to be tailored to the targeted macroscopic
observable and the parameter regime under study. Only then one can exploit the full
strengths of the reduced phase model. Finally, a word of caution is in order. Phase
reduction is strictly valid only for a number of necessary assumptions. Therefore,
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one always ought to keep in mind the limitations and range of applicability of an
accurately reduced phase model.

In the following, we will demonstrate these aspects in more detail. We will guide
our presentation along the example of a network of interactingWilson-Cowan neural
masses, which will be introduced in Sect. 3.2. We will present different phase reduc-
tion techniques for a network of weakly coupled oscillators in Sect. 3.3 and show
that they may indeed result in different predictions about the collective dynamics.
We reported these results previously in an extensive review on network dynamics
and phase reduction techniques [67]. Here we add to this by highlighting possible
limitations of phase reduction for oscillatory networks in Sects. 3.4 and 3.5. Partic-
ular focus lies on network topologies, especially when considering a realistic brain
network connectivity structure, and on coupling strengths beyond the weakly per-
turbed paradigm. We demonstrate why in these cases a reduced phase model may
(not) provide valuable information about the actual network dynamics.

3.2 Networks of Wilson-Cowan Neural Masses

Considering large-scale oscillatory brain networks, the elementary network compo-
nents, or nodes, can be assumed to be neural populations consisting of a large number
of neurons. From the variety of neural population, or neural mass, models, the sem-
inal Wilson-Cowan neural mass model [88] serves as an exquisite example to derive
the phase dynamics in great detail. The Wilson-Cowan model describes the dynam-
ics of the mean firing rates of neuronal populations. At every node k = 1, . . . , N of
the network, we placed properly balanced pairs of excitatory and inhibitory popu-
lations with mean firing rates Ek = Ek(t) and Ik = Ik(t), respectively. The nodes
are coupled to other nodes through the connections between their excitatory popula-
tions [21, 23, 76]. The connection weigths are typically given by a coupling matrix
C = {C jk} j,k=1,...,N . We illustrate the basic structure of this network in Fig. 3.1.

The dynamics at node k takes on the form

Ėk = −Ek + S
⎡
⎣aE

⎛
⎝cEE Ek − cE I Ik − �E + κ

N

N∑
j=1

Ckj g(E j )

⎞
⎠

⎤
⎦

İk = −Ik + S [aI (cI E Ek − cI I Ik − �I )] .

(3.1)

The function S[x] = (1 + e−x )−1 is a sigmoid function with thresholds �E and
�I that need to be exceeded by the total input into neural mass k to elicit fir-
ing; the parameters aE and aI describe the slopes of the sigmoids. The constants
cEE , cE I , cI E , cI I quantify the coupling strengthswithin each (E/I ) node andκ � 1
scales the coupling between different nodes. Pairwise interaction between differ-
ent nodes is mediated through the coupling function g(E), which we choose as
g(E) = E(t) − E0. By subtracting an average E0 (typically, the unstable fixed point
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Fig. 3.1 Network of three
coupled Wilson-Cowan
neural masses. Each node
contains excitatory and
inhibitory populations, Ek
and Ik , that are internally
coupled with strengths ci j ,
i, j ∈ {E, I }. Interaction
between two neural masses
k �= j occurs via their
respective excitatory
populations, where Ckj
denotes the connectivity
whether node k receives
input from node j

within a stable limit cycle) from the actual firing rate E = E(t), we avoid spurious
contributions from other neural masses when they are all synchronized. In gen-
eral, the interaction within and between different nodes may be time-delayed due
to finite signal transmission of, in particular, long-range connections. Allowing for
time delays between nodes, or for spatial interaction kernels, yields more intricate
coupling dynamics, see, e.g., [47, 73]. For the sake of legibility we here restrict our
analysis to instantaneous interactions. We note, however, that phase reduction can
also be employed in face of time delays [67, Sect. 10.3.2].

Depending on the choice of parameters, the Wilson-Cowan model Eq. (3.1) can
exhibit rich dynamics such as self-sustained oscillations and multi-stability, see,
e.g., [14, 45, 67, 88]. Here, we restrict the parameter values (see Appendix) to the
dynamical regime in which every isolated (κ = 0) node displays stable limit cycle
oscillations. Each point on this stable limit cycle can, in general, be described in terms
of a phase and an amplitude. If the attraction towards the limit cycle is sufficiently
fast, it is possible to ignore the amplitude dynamics so that the one-dimensional phase
variable φk reliably describes the state of the oscillator not only on the limit cycle,
but also in its close vicinity. Moreover, assuming weak coupling between nodes, we
can then capitalize on the theory of weakly coupled oscillators [32, 45, 67] to extract
the phase dynamics of each node k = 1, . . . , N in form of

φ̇k = ωk + κ

N

N∑
j=1

Ckj�(φk − φ j ) (3.2)

with a natural frequency term ωk and a phase interaction function �(ψ) that depends
on the phase difference φk − φ j between two nodes k �= j . The phase interaction
function �(ψ) is typically periodic in ψ and can thus be expanded in a Fourier series:

�(ψ) = a0 + a1 cos(ψ) + b1 sin(ψ) + a2 cos(2ψ) + b2 sin(2ψ) + · · · (3.3)
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The phase dynamics Eqs. (3.2 and 3.3) can subsequently be analyzed with respect
to the synchronization behavior of the network. A useful macroscopic observable to
describe the network dynamics is the Kuramoto order parameter [51]

z = Rei� = 1

N

N∑
k=1

eiφk , (3.4)

whose absolute value R = |z| takes on values between 0 and 1. R = 0 indicates
an incoherent state, whereas R = 1 indicates a fully synchronized state. Values
0 < R < 1 indicate partially synchronous collective dynamics. Furthermore, the
Fourier coefficients an, bn of the phase interaction function Eq. (3.3) are indica-
tive for particular network behavior. For example, if we consider only the first two
harmonics in �(ψ), i.e. an = bn = 0 for n > 2, and global coupling, Ckj = 1 for all
k �= j , then it can be shown [20, 49, 67] that the phase model exhibits

• a fully synchronized state for κb1 > 0,
• a balanced two-cluster state for κb1 < 0 and κb2 > 0, and
• slow switching behavior of oscillators between two unbalanced clusters for κb1 <

0,κb2 < 0 and b1 is comparable in size to b2.

There may exist additional attractors such as, e.g., three-cluster states or the so-
called self-consistent partially synchronous state [20], but general conditions for
their existence in terms of the Fourier coefficients b1,2 are elusive, so that we rather
concentrate on the three regimes above as well as on the incoherent state for κb1 < 0.
One can use these insights to predict the collective dynamics of the full network. An
accurately reduced phase model is capable of forecasting the transition between
synchronous and asynchronous network behavior. Moreover, when focussing on
higher harmonics of the phase interaction function �(ψ), also non-trivial collective
dynamics in the original model can be explained with the help of a reduced phase
model.

3.3 Phase Reduction of Oscillatory Neural Networks

The ultimate goal of phase reduction is to rigorously establish the mapping between
the full dynamics Eq. (3.1) and the reduced phase model Eq. (3.2) by expressing the
natural frequency and the phase interaction function in terms of the parameters of
the original model Eq. (3.1). Central to phase reductions of weakly coupled neural
oscillators is Malkin’s theorem [45, 56, 77], which provides a recipe to reduce a
dynamical system of the form

ẋk = f (xk) + κgk(x1, . . . , xN ), xk ∈ R
n, k = 1, . . . , N , (3.5)
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into a phase model Eq. (3.2). As the form of the Wilson-Cowan model Eq. (3.1)
does not comply with that of Eq. (3.5), it is compulsory to first transform the orig-
inal dynamics appropriately. Only then we can employ standard methods [67] to
retrieve the phase model Eq. (3.2). We note that the “pre-processing” step can be
achieved either numerically or analytically [67, Sects. 4 and 6], giving rise to classi-
fying different phase reduction approaches as either analytic or numerical reduction
techniques.

Numerical approaches tend to be more accurate. But their software implementa-
tion often computes the necessary properties for phase reduction internally, which
leaves the link between the original and the phase model parameters unclear. By con-
trast, analytic approaches build on subsequent algebraic transformations that yield a
rigorous representation of the phasemodel parameters in terms of the original param-
eters, although such a representation may become convoluted. The pre-processing of
the full dynamics Eq. (3.1) into Eq. (3.5) is based on the idea that close to a particular
bifurcation, different models exhibit similar dynamics. Given that theWilson-Cowan
model Eq. (3.1) exhibits oscillatory behavior close to a Hopf bifurcation, we thus
aim at transforming Eq. (3.1) into the simplest model that captures the essence of
the dynamics close to a Hopf bifurcation point. This simplest model is called Hopf
normal form and we can obtain it with a so-called normal form, or center mani-
fold, reduction [45, 59, 67]. There is, however, a caveat. Since we consider not only
a single isolated neural oscillator but a network of coupled neural oscillators, we
require a network Hopf normal form: That is, not only the uncoupled part f (x) in
Eq. (3.5) has to be brought into Hopf normal form, but also the coupling function
gk(x1, . . . , xN ) has to be identified accordingly subject to all symmetry constraints
that are inherent to multiple Hopf bifurcations. Although there is a mathematical
proof for such a network Hopf normal form, to the best of our knowledge, no general
and exact algorithm for deriving it is at hand. Instead, two approximative schemes
have proven fruitful to retain the simplified network Hopf normal form: Kuramoto’s
reductive perturbation approach and Poincaré’s nonlinear transform approach, for
details we refer to [67].

Stepping over these often laborious algebraic transforms, there is an alternative
analytic approach which becomes exact for weakly coupled oscillators that follow a
circular limit cycle: Haken’s reduction via averaging [41, 67], see also [13, 40]. For
planar oscillatory dynamics close to aHopf bifurcation, the Jacobian of the uncoupled
Wilson-Cowan dynamics Eq. (3.1) evaluated at the unstable fixed point (E0

k , I
0
k ) has

a pair of complex conjugate eigenvalues λ± = μ ± iω with positive real part, μ > 0,
which corresponds to the distance to the Hopf bifurcation point.1 We then express
the dynamics in terms of the deviations xk = (

Ek − E0
k (μ), Ik − I 0k (μ)

)
around the

unstable fixed points. Approximating the sigmoidal activation function S up to third
order and applying some laborious algebraic transforms [67], one can derive a fairly
generic form of the dynamics Eq. (3.1) that reads

1Typically, one measures this distance in parameter space, e.g., in parameter �E such that μ =
�E − �H

E , where the Hopf bifurcation occurs at �E = �H
E .
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ẋk = Lxk + T−1 f (Txk;μ) + κT−1
N∑
j=1

g
(
Txk, Tx j

)
. (3.6)

Here, L is the Jordan real form of the dynamics’ Jacobian J , T the matrix con-
taining the eigenvectors of J . The function f includes all components within node k
that contribute to its dynamical change and g covers all the between-node interaction,
i.e. the last term of the right-hand side of the Ėk dynamics in Eq. (3.1) now given as
coupling between the nodes xk and x j . The dynamics Eq. (3.6) exhibits qualitatively
the same behaviour as Eq. (3.1), but due to the Jordan real form, a circular symmetry
of the limit cycle is imposed on the full dynamics.

In the immediate vicinity of the Hopf bifurcation point, one can exploit the separa-
tion of time scales of phase and amplitude dynamics and readily transform Eq. (3.6)
into xk = (xk, yk) = (rk cos(φk), rk sin(φk)), where rk and φk = �t + θk are ampli-
tude and phase (deviations) of the oscillations at node k, which are slowly varying
with respect to the (mean) frequency � [42], here defined over the eigenvalues at
the Hopf point, � = ω(μ = 0). Near the onset of oscillations through a supercritical
Hopf bifurcation, rk � 1 is small and, thus, the right-hand side of Eq. (3.6) is at
least of order O(rk). Given the slower time scales of rk and θk = φk − �t , one can
average over one cycle T = 2π/�. In line with [21], this direct averaging of the
dynamics Eq. (3.6) yields the drastically reduced phase model Eq. (3.2 and 3.3)

φ̇k = ωk + κ

N

N∑
k=1

Ckja1 sin(φk − φ j ) (3.7)

with natural frequency ωk = aEaI cI EcE I S′
E S

′
I − 1

4 (aEcEE S′
E + aI cI I S′

I )
2, first

Fourier amplitude a1 = 1
2aE S

′
E�kCkj (R j/Rk), and all other amplitudes vanish:

a0 = an = 0 for n > 1 as well as bn = 0 for all n ≥ 1. We abbreviated �2
k = 1 + ρ2k

with ρk = 1
ωk

(aEcEE S′
E + aI cI I S′

I ) and S′
E/I denotes the first derivative of the sig-

moid S evaluated at the fixed points E0
k /I

0
k of Eq. (3.1).

In summary, we have four different phase reduction techniques:

1. Reductive perturbation approach
2. Nonlinear transform approach
3. Direct averaging
4. Numerical/adjoint.

The first two are the analytic approaches that build on a pre-processing step to bring
the dynamics in network Hopf normal form. Then, there is Haken’s approach that
circumvents a rigorous normal form reduction by applying averaging directly to
presumably circular dynamics close to the Hopf bifurcation. And finally, one can
employ a numerical approach, which capitalizes on Malkin’s theorem and provides
numerical values for the reduced phase model by solving an associated adjoint prob-
lem [16, 29, 31, 32, 45], which has, e.g., been automatized in the software packages
XPPAUT [28] orMatCont [26]. In order to compare the different approaches, wewill

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scholarpedia.org/article/MATCONT
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apply the four different phase reduction techniques to the network of Wilson-Cowan
neural masses Eq. (3.1). In the resulting phase models Eq. (3.2), we will concentrate
on the reduced natural frequency term ωk and the first two Fourier harmonics in the
phase interaction function Eq. (3.3). Their amplitudes will serve as a quantitative
measure of how accurate the phase models are, whereas their relationships with one
another provide a qualitative measure indicating whether the reduced phase models
result in the correctly predicted collective dynamics; see the end of Sect. 3.2 for a
classification of the network’s phase dynamics in terms of the Fourier coefficients.

Phase reduction is highly parameter-sensitive

A first litmus test concerns the accuracy of the different phase reduction techniques
close to a bifurcation boundary. Center manifold and normal form theory prescribe
the exact form of the phase interaction function �(ψ), see [16]. For the regime near
a supercritical Hopf bifurcation, the topological normal form [53] of the dynamics
yields a purely sinusoidal phase interaction function, that is, all Fourier coefficients
but b1 in Eq. (3.3) will vanish. The topological Hopf normal form requires further
algebraic transformations than the conventional (Poincaré) Hopf normal form, but
its essence remains the same: the first Fourier harmonics dominates and higher har-
monics tend to zero. In Table 3.1 we show the results of the different phase reduction
techniques when the distance to the Hopf bifurcation is as small as μ = 0.0003;
here, we chose �E as the bifurcation parameter so that μ := �E − �H

E with �H
E the

parameter value where the supercritical Hopf bifurcation occurs. All four reduction
techniques can reliably retrieve the correct shape of the phase interaction function
with dominant first harmonics and a positive first odd Fourier coefficient b1 > 0,
which indicates a fully synchronized state. Moreover, the natural frequency terms
coincide for all reduction techniques. Note that the quantitative differences do not
influence the qualitative predictions of the network behavior.

When increasing the distance to the Hopf bifurcation point, however, the phase
models start to diverge. In Table 3.2, we show exemplary results of the phase model
parameters for μ = 0.1663. Only the numerical/adjoint method captures the change
of slope of the phase interaction function (whose derivative atψ = 0 is dominated by
b1) and predicts that the fully synchronized state becomes unstable in this parameter
region. The other three reduction techniques still predict the synchronous solution,

Table 3.1 Phase models derived with different reduction techniques infinitesimally close to the
Hopf bifurcation (μ = 0.0003). The oscillators’ natural frequency isω, and an, bn are the amplitudes
of the Fourier components of the phase interaction function �

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

0.701 –0.9505 1.1555 –0.0001 0.0013

Nonlinear transform 0.701 –0.9457 1.1382 –0.0009 0.0013

Direct averaging 0.701 –0.6940 0.2140 – –

Numerical/adjoint 0.701 –0.0472 0.3843 –0.0001 0.0002
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Table 3.2 Phasemodels derivedwith different reduction techniques away from theHopf bifurcation
(μ = 0.1663). The oscillators’ natural frequency is ω, and an, bn are the amplitudes of the Fourier
components of the phase interaction function �

Approach ω a1 b1 a2 b2
Reductive perturbation 0.728 –0.9505 1.1555 –0.2470 0.3657

Nonlinear transform 1.023 –0.4905 0.1383 –0.0604 0.0503

Direct averaging 1.330 –0.4733 0.2390 – –

Numerical/adjoint 0.939 –0.4447 –0.2668 –0.0635 –0.0451

although the reduced phase models differ with respect to the amplitude of the har-
monics. Compared to the numerical/adjoint method, Poincaré’s reduction via nonlin-
ear transforms yields the same orders of magnitude, whereas Kuramoto’s reductive
perturbation overestimates the second harmonics and the direct averaging by con-
struction does not contain any higher harmonics at all. Strong first harmonics of the
phase interaction function will amplify the coupling and thus result in faster (de-
)synchronization, depending on the sign of the sinusoidal component. Second and
higher harmonics may play a crucial role for clustering. An over- or underestimation
of the amplitudes of higher harmonics may hence lead to erroneous predictions of
multiple- or one-cluster states.

Accurate phase models capture the true collective dynamics

The farther one moves away from particular bifurcation boundaries, the more the
reduced phase models will diverge. Naturally, one seeks a phase reduction technique
that reliably recovers the (collective) behavior of the original (network) dynamics.
While the accuracy of analytic phase reduction techniques scales with the distance
to the bifurcation point (due to the normal form reduction inherent to these two-step
reduction approaches [67]), numerical phase reduction techniques, in general, do not
suffer this shortcoming and can retain the accuracy across parameter space. For this
reason, we will probe the numerical phase reduction and test whether it captures the
collective dynamics of the Wilson-Cowan network, indeed.

Following the literature [43, 45], we choose�E and�I as bifurcation parameters
and, first, investigate the transition to synchrony as predicted by the slope �′(0)
of the phase interaction function changing from positive (fully synchronous state)
to negative values (synchrony becomes unstable). In line with previous results,2

our findings confirm the general picture that for large parameter regions the fully
synchronous state is stable, see the yellow/red regions in Fig. 3.2. In particular,
synchrony is stable close to the Hopf bifurcation boundaries of the isolated Wilson-
Cowan dynamics (dashed lines in Fig. 3.2).

Second, we try to elucidate the dynamics in parameter regions where the fully
synchronized state is no longer stable, see the blue regions and the inset in Fig. 3.2,

2Hlinka and Coombes [43] showed that the predictions based on the derivative of the numerically
reduced phase interaction function agreed almost perfectly with the synchronization properties of
the original network, cf. their Figs. 3.6 and 3.7.
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Fig. 3.2 Oscillatory regime of the Wilson-Cowan neural mass model Eq. (3.1) with parameters
Eq. (3.8). The colored region of oscillatory behavior lies within the Hopf bifurcation boundaries
(black dashed curves) for a single isolated Wilson-Cowan neural mass. The color coding indicates
the derivative of the phase interaction function � at ψ = 0 determining the stability of the fully
synchronized state: if �′(0) > 0 the fully synchronized state is stable, and unstable otherwise.We
used the numerical/adjoint reduction method to generate this figure

and where previous results did not predict the actual dynamics correctly. Close to the
Hopf bifurcation boundary the slope �′(0) ≈ b1 of the phase interaction function is
positive and correctly predicts synchronization. Moving upwards in parameter space
by increasing �I leads to a change of signs in �′(0), and we are in the deep blue
region in Fig. 3.2, where the fully synchronous state is no longer stable. We fix the
parameter�E = −3 and analyze the numerically reduced phase interaction function
with respect to higher harmonics for different values of �I . At �I = −9.3, we find
that b1 > 0 (stable fully synchronous solution). At �I = −8.9, b1 < 0 and b2 < 0,
predicting that the oscillators are evenly spread along the limit cycle, which is also
called a stable anti-cluster state. For larger �I = −8.7, the balanced two-cluster
state becomes stable (b1 < 0 and b2 > 0); for the exact numerical values see the
Appendix. To test the predictions of the reduced phasemodel, we simulated a network
of N = 30Wilson–Cowan neuralmasseswith global coupling,Ckj = 1 for all k �= j ,
and coupling strengthκ = 0.15. As can be seen in Fig. 3.3, the simulations confirmed
the predicted (a) fully synchronized state, (b) an anti-cluster state, i.e. incoherence,
and (c) a stable two-cluster state, respectively. The other phase reduction techniques
did not only fail to predict the existence of two-cluster states, but they also missed
the transition from synchrony to incoherence; cf. Table 3.2.

We can thus conclude that an accurately reduced phase model within its range of
applicability can correctly predict collective dynamics of a network of neural oscilla-
tors across parameter space. Numerical techniques outperform analytical approaches
with respect to accuracy. Still, analytical approaches can yield a direct link between
original model parameters and the constituents of the reduced phasemodel that allow
for an immediate prediction of the network state. It is, however, crucial to verify the
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Fig. 3.3 Non-trivial network dynamics of N = 30 coupled Wilson-Cowan neural masses. The
different network states a global synchronization, b incoherence, and c a balanced two-cluster state
were predicted by the reduced phase model using the numerical/adjoint method. Displayed are
final (Tend = 1000 seconds) conditions (‘o’) on the uncoupled limit cycle (left column) and the
extracted phases (right) for the last 15 seconds. We fixed the coupling strength at κ = 0.15 and the
simulations started from uniformly distributed initial conditions along the uncoupled limit cycle.
Parameter values of (�E ,�I ) are a (−3,−9.3), b (−3,−8.9) and c (−3,−8.7)

parameter region where the analytical approaches are applicable. For this reason, we
advocate a combination of numerical and analytical phase reduction techniques to
provide an accurate picture of the network dynamics and its phase synchronization
properties by means of a reduced phase model.

3.4 Phase Reduction in Face of Strong Coupling

The reduction of phase dynamics from a network of coupled oscillators retains its
mathematical justification as long as the theory of weakly coupled oscillators applies.
However, no rigorous definition of weak coupling exists, nor a concrete limit of
the coupling strength at which the character of interaction switches from weak to
strong. Usually, phase reduction is achieved with the tacit understanding that each
isolated dynamical system already displays stable limit cycle oscillations, which is
a necessary condition for the theory of weakly coupled oscillators to hold [5, 45].
However, in some cases it is the coupling between systems that induces oscillations.
Smale was among the first to investigate the emergence of oscillations via a Hopf
bifurcation due to diffusive coupling [79]. On the other hand, coupling between
systems can also make oscillations cease. Ermentrout and Kopell reported this kind
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of oscillation death for a chain of Wilson-Cowan neural masses [30], see also the
work by Daffertshofer and vanWijk on a (heterogeneous) network ofWilson-Cowan
neural masses [23]. Those coupling-induced effects only occur for reasonably large
coupling strengths, and a straightforward identification of the phase dynamics as
within the theory of weak coupling is not possible. While sufficiently weak coupling
ensures that the shape and the frequency of the limit-cycle orbits remain almost
unchanged, strong coupling leads to non-negligible amplitude effects. These can
destabilize synchronized states, quench oscillations, or cause collective chaos, and
a phase reduction has only been proposed for quite restrictive assumptions; see [52]
and the references therein. Hence, phase-amplitude reductions [19, 78, 87], see also
[57, 67] for reviews, have to be employed that also take interactions between phase
and amplitude dynamics into account. The theory of weakly coupled oscillators
additionally requires that the actual trajectories of the oscillators are always close to
the isolated limit-cycle solution.While reductionmethods exist that allow for a phase
reduction farther away from the underlying periodic orbit, see, e.g., [57, 67, 89], we
here try to answer the question whether appropriate conventional phase models can
still capture coupling-induced collective dynamics.

Oscillation birth and clustering

To investigate coupling-induced behavior, it appears illustrative to start with two
coupled identical Wilson-Cowan neural masses. In Fig. 3.4 we show the bifurcation
diagram with respect to the coupling strength. Without coupling, κ = 0, the dynam-
ics Eq. (3.1) feature only one stable stationary solution (black solid line). Increasing
the coupling strength induces oscillations through a (double) Hopf bifurcation (red
dot). The critical coupling strength κH can also be determined analytically, see the
Appendix but also [4]. In our example, it is considerably small with κH = 0.00531
(note that we did not rescale the coupling by a factor 1/N ). In this coupling-induced
oscillatory regime, the initial conditions can have a major impact on the resulting
dynamics. For small coupling strengths κ < 0.6 (see green dot), the two Wilson-
Cowan neural masses evolve from any initial conditions either into the same limit
cycles or into the low activity resting state (blue solid curve). For larger coupling
strengths, however, only identical initial conditions result into the same (red) limit
cycles. Different initial conditions for the two coupled neural masses may still lead
to stable oscillations, but the respective limit cycles of each neural mass can differ
in amplitude and shape (cf. the green curves in Fig. 3.4). Moreover, these distinct
oscillations that resulted from distinct initial conditions are stable beyond a critical
coupling strength at which those oscillations from identical initial conditions have
ceased to exist (through a fold bifurcation of limit cycles, see the inset in Fig. 3.4).
From the point of view of oscillation quenching mechanisms [50], the onset of (iden-
tical) limit-cycle oscillations of the twoWilson-Cowan neural masses for small cou-
pling strengths is a mechanism inverse to amplitude death. Larger coupling induces
a symmetry breaking from two identical to two distinct limit cycles, and thus drives
the system into an oscillation death-related regime. Note, however, that the Wilson-
Cowan neural masses keep oscillating around the same, spatially uniform center,
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Fig. 3.4 Bifurcation diagram of two coupled identical Wilson-Cowan neural masses with parame-
ters (�E ,�I ) = (−3,−9.4). At low coupling, the units are at rest (black solid curve). Oscillations
emerge at a double Hopf bifurcation (red dot), where the resting state becomes unstable (black
dashed). The red curves display upper and lower limit of the limit cycles. Beyond the green dot,
identical initial conditions of the two units evolve towards identical limit cycles (red curve) that are
destroyed through a fold bifurcation of limit cycles (second red dot), whereas non-identical initial
conditions lead to two distinct oscillatory solutions (with upper/lower limits on either the outer or
inner branches of the green curves) that remain stable for large coupling strengths, for which iden-
tical initial conditions lead into a low-activity resting state (blue solid).The yellow dot represents a
homoclinic bifurcation, induced through the unstable saddle (blue dashed) that emerged through a
saddle-node bifurcation of fixed points (blue dot)

and that beyond a critical coupling strength, oscillations cease and give rise to a
homogeneous steady state, which is coined amplitude death in the literature [50].

Based on the brief analytic insights concerning two coupled oscillators, we antic-
ipate that coupling-induced effects will increase the intricacy of larger networks of
strongly coupled oscillators. To illustrate this, we simulated a fully connected net-
work of 30 identical Wilson-Cowan neural masses with random initial conditions.
Figure 3.5 displays the network behavior for different coupling strengths. Without
coupling, the dynamics evolve from random initial conditions towards the stationary
solution given by the fixed point in Fig. 3.5 (top left panel). The dynamics of the
(absolute value of the) Kuramoto order parameter R reflects the transient oscillatory
dynamics from the initial conditions into the fixed point solution, where the phases of
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Fig. 3.5 Coupling-induced behavior of N = 30 globally coupled identical Wilson-Cowan neural
masses with parameters (�E ,�I ) = (−3,−9.4). Without coupling (top row), only the resting state
is stable. At low coupling strength κ = 0.05 (middle row), all neural masses synchronize on the
same limit cycle. At high coupling strength κ = 0.81 (bottom row), the neural masses form three
clusters on distinct limit cycles and show intermittent synchronization. Left: dynamics of all neural
masses in the Ek − Ik plane for the last t = 15 seconds. Middle: extracted phases of all neural
masses. Right: absolute value of the Kuramoto order parameter displaying phase synchronization
of the network. See the Appendix for details about the network simulation and analysis.

the oscillators stay constant (after t ≈ 2500s). For κ = 0.05, the coupling is already
strong enough to lead to maintained oscillatory dynamics. TheWilson-Cowan neural
masses become fully synchronized and oscillate on identical limit cycles (middle row
in Fig. 3.5). For even stronger coupling, the coupling-induced oscillations become
more complex. Clusters of oscillators emerge, which evolve on distinct oscillatory
trajectories. In Fig. 3.5 (bottom row), the oscillatory neural masses have formed
three groups that consist of different numbers of oscillators. Within each group, all
oscillators are perfectly synchronized and follow the same (quasiperiodic) dynam-
ics (see the middle and left panel, respectively). These dynamics differ, however,
across groups. Note that although the Kuramoto order parameter exhibits complex
oscillatory dynamics around a value that may indicate some partially synchronous
state, it is impossible to infer from it the correct network behavior of three oscillating
clusters.

Quenching of oscillations and quasiperiodic dynamics

To investigate the quenching of oscillations, we chose parameters such that (a) a
single isolatedWilson-Cowan neuralmass exhibits stable limit-cycle oscillations and
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Fig. 3.6 Amplitude death and quasiperiodic behavior of two coupled identical Wilson-Cowan neu-
ral masses. a Bifurcation diagram similar to Fig. 3.4, but starting with stable limit cycle oscillations
without coupling. Oscillation death occurs via a homoclinic bifurcation (yellow dot) for identical
initial conditions. The red dots denote the emergence of quasiperiodic behavior for distinct initial
conditions. In b quasiperiodic behavior of the two Wilson-Cowan neural masses (final condition
of the two limit cycles shown as ‘o’) is depicted for coupling strength κ = 0.475. c The phase
difference ψ(t) = θ1(t) − θ2(t) (blue line) fluctuates around the mean ψ̄(t) = −π (orange), which
indicates an incoherent state.

(b) weak global coupling leads to an incoherent, that is, asynchronous solution. The
bifurcation diagram for two coupled identical oscillators with respect to the coupling
strength is shown in Fig. 3.6. For identical initial conditions, the red curves represent
the upper and lower limit of the amplitude of identical limit cycles, on which the two
oscillators are phase-locked with a constant phase difference of |θ1(t) − θ2(t)| = π,
as expected for weak coupling. The oscillations cease via a homoclinic bifurcation
(yellowdot), in contrast to the fold bifurcation of limit cycles in the previous example.
For distinct initial conditions, we find again two different oscillatory regimes: at low
coupling strengths, the anti-phase periodic solutions evolve on the same limit cycle.
However, for coupling strengths larger than κ ≈ 0.45 (red dot) each neural mass
exhibits quasiperiodic behavior (Fig. 3.6b). Remarkably, the mean phase difference
ψ̄(t) = limT→∞

∫ T
0 |θ1(t) − θ2(t)|dt = π stays constant, see orange line inFig. 3.6c,

which underlines that the oscillators remain incoherent.
As before, we simulated the network dynamics and confirmed the analytic pre-

dictions extrapolated from two coupled Wilson-Cowan neural masses to a larger
network. Results are shown in Fig. 3.7. The parameters �E ,�I are chosen such that
the reduced phase model predicts asynchronous network dynamics for low cou-
pling strengths, as is demonstrated by the simulations (top row). Increasing the
coupling strength leads, first, to a general increase in network synchronization as
indicated by the Kuramoto order parameter and, then, to quasiperiodic dynamics
(middle row). The oscillators follow the same quasiperiodic trajectories spanning an
annulus-shaped region in state space (similar to the behavior as shown in Fig. 3.6b).
Note that although the phases of the oscillators tend to get closer to each other, the
coupling is not strong enough to completely synchronize them also with respect
to their amplitudes. Increasing the coupling strength even more, eventually results
in destroying the network oscillations: the oscillatory dynamics of the individual
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Fig. 3.7 Coupling-induced behavior of N = 30 globally coupled identical Wilson-Cowan neural
masses with parameters (�E ,�I ) = (−3,−9). At low coupling strength κ = 0.15 (top row), all
neural masses desynchronize on the same limit cycle as predicted by the phase model. At intermedi-
ate coupling strength κ = 0.75 (middle row), oscillators move along quasiperiodic trajectories and
tend to synchronize. At very high coupling strength κ = 0.81 (bottom row), oscillation death occurs
and the neural masses run into a low activity resting state. Left: dynamics of all neural masses in
the Ek − Ik plane for the last t = 15 seconds. Middle: extracted phases of all neural masses. Right:
absolute value of the Kuramoto order parameter displaying phase synchronization of the network.
See the Appendix for details about the network simulation and analysis.

Wilson-Cowan neural masses collapse into the same low activity state (bottom row
in Fig. 3.7). As before, the oscillation quenching mechanism is amplitude death [50].
Time-delayed interactions can also induce amplitude death, typically by stabilizing
a specific homogeneous state [50]. Incorporating time delays in our setup will affect
the bifurcation structure and may lead to interesting new phenomena, especially for
large coupling strengths. For weak coupling, we hypothesize that the predictions on
network synchronization based on a properly reduced phase model remain valid—
given that time delays are taken into account during the phase reduction as, e.g., in
[67, Sect. 10.3.2].

3.5 Phase Reduction in Face of Complex Structural
Connectivity

Up to now, we have only considered globally coupled Wilson-Cowan neural masses
with a trivial connectivity matrix, Ckj = 1 for all k �= j . A realistic connectivity
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structure in neural networks can have significant consequences for the collective
dynamics, see, e.g., [1–3, 7, 11, 12, 27, 38, 61, 62, 68, 71, 72, 81]. A network
topology, i.e. how the nodes of the network are connected, that deviates from global,
all-to-all coupling, may render many results about predicted network behavior no
longer valid. In some cases, the reduced phase interaction function � in combina-
tion with the connectivity matrix can still provide important information about the
collective dynamics of a realistically connected network, e.g., about (remote) syn-
chronization, see [25, 34, 58, 63, 69]. The Kuramoto model of phase oscillators
where �(ψ) = sin(ψ) has been extensively studied on complex networks, see, e.g.,
the review by Rodrigues et al. [70]. More recently, it could also be shown how time
delays shape the phase relationships in oscillatory networks with realistic connectiv-
ity structure [65, 66]. Some questions, however, still remain unanswered, e.g., how
structure shapes function, what the constituents for synchrony are, or what drives a
network into a chaotic state.

To illustrate how realistic structural connectivity—as derived, e.g., from diffu-
sion tensor imaging (DTI)—adds to the complexity of the dynamics of neural net-
works, we compared the dynamics of the full Wilson-Cowan model Eq. (3.1) with
the reduced phase model Eq. (3.2) for three different coupling topologies: a fully
connected homogeneous network, an anatomical network reported by Hagmann and
co-workers [39], and a network with small-world topology generated by the Watts-
Strogatz model [86]. For the fully connected homogeneous network (i.e. global con-
nectivity), we considered the adjacency valuesCkj = 1 for all k �= j , but setCkk = 0
to exclude self-connections. For theHagmannnetwork,weused aDTI dataset to build
a realistic network topology of the human cerebral cortex as described by Hagmann
et al. [39]. To extract the “structural core” of anatomical connections, the original 998
cortical regions were assigned to a 66-node parcellation scheme and averaged over
five subjects. The binary coupling matrix C = {Ckj } was obtained by subsequently
thresholding the weighted and undirected network gained through parcellation and

(a) Hagmann network (b) Small-world network

Fig. 3.8 Coupling matrices C = {Ckj } for a the Hagmann dataset and b the small-world topology
with N = 66 nodes. We generated the small-world network by using the same graph-theoretical
properties as of the Hagmann network (average degree = 10, rewiring probability = 0.2). White
pixels denote a link between nodes k and j , Ckj = 1
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Fig. 3.9 Simulation of the Wilson-Cowan dynamics at coupling strength κ = 0.15 for regimes as
predicted by the numerically reduced phase model: synchronization (top row), asynchrony (middle)
and two-cluster state (bottom); see Tables 3.3, 3.4 and 3.5 in the Appendix. Left: final (T = 2000)
position of all N = 66Wilson-Cowan oscillators on the unperturbed limit cycle (green)with random
initial conditions (black dots). Middle: histogram of the phases extracted from the final positions
of the oscillators. Right: phase synchronization of the network measured in terms of the absolute
value of the Kuramoto order parameter with a moving average of 20 seconds. Colors indicate full
connectivity (black, circles), small world (blue, diamonds), and Hagmann (red, squares)

averaging, see Fig. 3.8 (panel a) [23, 83]. Analyzing the coupling matrix C further
showed that the Hagmann network featured characteristics of a small-world network
with average node-degree 10. For comparison, we thus generated a small-world net-
work artificially by employing the procedure as introduced by Watts and Strogatz
[86]: starting from an ordered network on a ring lattice with nodes connected to only
a few direct neighbors, we subsequently rewired connections to random nodes with a
certain probability (in our case 0.2) until we obtained a small-world network with the
same average node-degree, see Fig. 3.8 (panel b). In otherwords, by adding a few ran-
dom nodes in an ordered network, we thus created a small-world network featuring
high clustering and low path length, which yields particular dynamical and synchro-
nization properties that are appealing for their use in neuroscience [3, 6, 8, 85].

We then simulated the Wilson-Cowan networks with the three different coupling
matrices. We chose parameter sets for which the reduced phase model (with global
coupling) predicted synchronization, incoherence and cluster states. In Fig. 3.9 we
show the network simulations for each of the three parameter regimes (top row: syn-
chronization, middle: incoherence, bottom: balanced two-cluster state) and for each
of the three coupling matrices (black: homogeneous coupling, blue: small-word, red:
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Fig. 3.10 Simulation of the reduced phase models as given in Tables 3.3, 3.4 and 3.5 at coupling
strength κ = 0.25 with full (left column), small-world (middle) and Hagmann network connectivity
(right) for parameter regimes where the numerically reduced phase model with global coupling
predicts synchronization (top row), asynchrony (middle) and two-cluster state (bottom) Insets show
histograms at final (T = 2000 for full connectivity, and T = 10000 otherwise) phase distribution for
N = 200 oscillators (N = 66 for Hagmann network). Colors correspond to numerical reduction
approach (black), direct averaging (green), reductive perturbation approach (red), and nonlinear
transform approach (blue)

Hagmann). Themore complex connectivity structures lead to macroscopic dynamics
that become indistinguishable from one another; cf. the red and blue graphs corre-
sponding to small-world and Hagmann networks, respectively. Only in the case of a
fully connected homogeneous network (black graphs), the actual dynamicsmatch the
predictions of the (numerically) reduced phase model. Furthermore, we simulated
the different phase models as derived with each of the four reduction techniques. The
numerically reduced phase dynamics (black graphs) correctly captures the original
Wilson-Cowan dynamics for full connectivity, see the left column in Fig. 3.10. For
non-trivial connectivity structures, however, none of the phase models can follow the
predictions based on the phase interaction function �. While for the small-world net-
work (middle column) the simulations hint slightly at the synchronous, asynchronous
and two-cluster regimes, respectively from top to bottom, the observed dynamics on
the Hagmann network appear arbitrary. Note that the direct averaging technique
(green graphs) leads to synchronous collective dynamics for almost all parameter
settings and connectivity structures. The two analytic techniques diverge for full
connectivity: the reductive perturbation approach (red) leads to a fully synchronized
state, whereas the nonlinear transform approach (blue) results in a two-cluster state,
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cf. the phase histograms of the final conditions (insets in Fig. 3.10). But for the small-
world and Hagmann networks, these two techniques converge to the same resulting
behavior. For details about the simulations see the Appendix.

In a nutshell, we can conclude that topology effects overcome otherwise precise
predictions of the phase model such that even the least accurate direct averaging
method does not perform worse than the other techniques.

3.6 Conclusion

Phase reduction is a powerful tool to simplify the dynamics of complex networks of
neural oscillators. The reduced phase model allows a reliable prediction of various
network behavior. Not only the transition between an incoherent state and a fully
synchronized state can be revealed, but, by taking higher harmonics of the reduced
phase interaction function into account, also non-trivial collective behavior can be
forecast such as cluster states or slow-switching between clusters.

There does not, however, exist “the” phase reduction, but one has to choose from
a variety of phase reduction techniques. The different reduction methods can broadly
be classified as numerical and analytical phase reduction techniques. We compared
different phase reduction techniques of oscillatory neural networks and showed that
close to a particular bifurcation boundary, all reduction techniques retrieve the same
qualitative results. Further away from bifurcation boundaries, different techniques
start to diverge and one has to pay careful attention to whether, e.g., an analytically
reduced phase model indeed captures the correct network behavior. We advocate a
combination of numerical and analytical approaches to ensure the sought-for accu-
racy of the phase model while, at the same time, allowing for a direct mapping
between the parameters of the neural network model with those of the reduced phase
model. By this, one can identify key parameters of the neural network that havemajor
influence on the synchronization properties of the network.

Furthermore, we showed that phase reduction has important limitations when fac-
ing strong coupling and realistic connectivity structure. Although augmented phase
reduction and phase-amplitude reduction techniques for single oscillators have seen
strong advances in recent years [57, 67], their extension to oscillatory networks has
yet to be achieved. We illustrated some peculiar characteristics of coupling-induced
behavior, such as birth and death of oscillations, and highlighted how insights about
the dynamics of two strongly-coupled oscillators can be used to explain network
effects such as clustering into groups of various sizes and quasiperiodic dynamics
on a network level. For small coupling strengths, predictions by the reduced phase
model remain valid. For stronger coupling, the validity of the reduced phase model
breaks down. A reasonably good proxy for a critical coupling strength beyond which
the phase model loses validity, can be obtained from the dynamics of two coupled
identical systems. We hypothesize that this critical coupling strength is exceeded
once the coupling-induced behavior becomes more complex, that is, when identical
initial conditions result in distinct oscillatory dynamics of the two oscillators.
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As to connectivity effects, we have to conclude that a reduced phase model cannot
account for changes in the underlying network topology. Realistic structural connec-
tivity has devastating impact on the network dynamics in that the collective behavior
drastically differs from that for homogeneous connectivity. Even the numerically
reduced phase model was no longer capable of capturing the actual network dynam-
ics and could also no longer outperform the other reduction techniques. All phase
reduction techniques performed equally well. Neither the Kuramoto order parame-
ter dynamics nor the phase diagrams were informative for the network states with
realistic structural connectivity. It may hence be helpful to first identify meaningful
observables that link structure and dynamics of the network. Once this has been
achieved for networks of general oscillators vis-á-vis networks of phase oscillators,
we may be able to answer the question whether a reduced phase model retains the
same structural-dynamical properties of the full network and can thus be used to
predict also exotic network effects that arise due to complex structural connectivity.

Appendix

Following the literature [43, 45], we considered�E and�I as bifurcation parameters
and fixed the other parameters of the Wilson-Cowan neural mass model Eq. (3.1) as

aE = 1, aI = 1, cEE = cE I = cI E = 10, cI I = −2. (3.8)

The numerical phase reduction technique correctly predicts the stability of the
globally synchronized state for parameters (�E ,�I ) = (−3,−9.38), of the inco-
herent state for (�E ,�I ) = (−3,−8.9), and of the balanced two-cluster state for
(�E ,�I ) = (−3,−8.7). Tables 3.3, 3.4 and 3.5 provide the numerical values of
the Fourier coefficients of the numerically reduced phase interaction function �(ψ),
Eq. (3.3), together with those derived along the analytic phase reduction techniques.

Coupling induced behavior
We investigated the birth and death of oscillations due to the strength of coupling
between oscillators. The bifurcation diagrams in Figs. 3.4 and 3.6 were created with
MatCont [26] for two identicalWilson-Cowan neural masses following the dynamics

Table 3.3 Phase models derived for different approaches at �E = −3,�I = −9.38

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.800 –0.3666 0.0251 –0.0006 0.0015

Nonlinear transform 1.800 –0.3675 0.0260 –0.0006 0.0015

Direct averaging 1.800 –0.1280 0.5739 – –

Numerical/adjoint 1.800 –0.0413 0.0339 –0.0002 –0.0001

http://www.scholarpedia.org/article/MATCONT


50 B. Pietras and A. Daffertshofer

Eq. (3.1). The coupling-induced Hopf bifurcation can be determined analytically by
inspecting the eigenvalues of the Jacobian of the (high-activity) resting state (E0, I 0).
The Jacobian has the form

J =

⎛
⎜⎜⎝

−1 + cEE SE1 −cE I SE1 κSE1 0
cI E SI1 −1 − cI I SI1 0 0
κSE1 0 −1 + cEE SE1 −cE I Sx1
0 0 cI E SI1 −1 − cI I SI1

⎞
⎟⎟⎠

where we introduced the abbreviations SE1 = aE S′ [aE
(
cEE E0 − cE I I 0 − �x

)]
and SI1 = aI S′ [aI

(
cI E E0 − cI I I 0 − �y

)]
and (E0, I 0) denotes the fixed point

solution. The eigenvalues λ1,2,3,4 of J can readily be found and the Hopf bifur-
cation point at Re(λ1,2) = 0, Re(λ3,4) < 0 identified. The critical coupling strength
is κH ≈ 0.053, in perfect agreement with our computations using MatCont [26].

Network simulations
The network simulations for Fig. 3.3 of N = 30 globally coupled, identical Wilson-
Cowan neural masses have been initialized by choosing initial conditions on the
uncoupled limit cycle such that the phase synchronization (real-valued Kuramoto
order-parameter) was R = 0.15. The dynamics Eq. (3.1) have then been run with
parameter values given by Eq. (3.8) and coupling strength κ = 0.15 using an Euler-
Mayurama scheme over T = 1000s (T = 5000s for panels b and c) with stepsize
dt = 0.001s and noise strength σ = 10−8.

For the network simulations in Figs. 3.5 and 3.7, we used again N = 30 glob-
ally coupled identical Wilson-Cowan neural masses and set the coupling strength as
indicated in the captions. We chose random initial conditions in the basin of attrac-

Table 3.4 Phase models derived for different approaches at �E = −3,�I = −8.9

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.276 –0.3666 0.0251 –0.0381 0.0868

Nonlinear transform 1.263 –0.4592 0.0908 –0.0194 0.0562

Direct averaging 1.276 –0.2283 0.4600 – –

Numerical/adjoint 1.267 –0.4436 –0.1244 –0.0077 -0.0184

Table 3.5 Phase models derived for different approaches at �E = −3,�I = −8.7

Approach ω a1 b1 a2 b2
Reductive perturba-
tion

1.078 –0.3666 0.0251 –0.0522 0.1187

Nonlinear transform 1.079 –0.4945 0.1217 –0.0191 0.0574

Direct averaging 1.078 –0.2649 0.4245 – –

Numerical/adjoint 1.062 –0.5877 –0.2324 –0.0304 0.0135

http://www.scholarpedia.org/article/MATCONT
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tion of the attracting high-activity resting state, and of the attracting limit-cycles,
respectively, and found the same behavior for a range of different random selec-
tions of initial conditions. We simulated Eq. (3.1) over T = 1000s with a time-step
dt = 0.0005s using an Euler-forward scheme. Simulations using a Runge-Kutta
fourth order scheme resulted in the same dynamics. We extracted the phases from
each Wilson-Cowan node (Ek, Ik) using the function θk = atan2(xk, yk), where
xk = Ek − E0 and yk = Ik − I 0 denote the deviations from the unstable fixed point.
The degree of synchronization is measured as phase coherence in terms of the real-
valued Kuramoto order parameter, |z(t)| = |∑k exp(iθk(t))|. Both the phase values
as well as the Kuramoto order parameter have been extracted on a coarser time scale
with dt = 0.1s.

For the network simulations in Fig. 3.9, we simulated the dynamics Eq. (3.1) for
N = 66 identicalWilson-Cowan neuralmasseswith coupling strengthκ = 0.15 over
T = 2000s with a time step of dt = 0.0005s using an Euler-forward scheme, and
extracted the phases and the Kuramoto order parameter as described above. We used
amoving average of 20s to better compare the evolution of the degree of synchroniza-
tion for the different networks. We also simulated the corresponding phase dynamics
Eq. (3.2) of the reduced phase models on the different network structures and in the
three dynamical regimes. The Fourier coefficients for the respective phase models
are listed in Tables 3.3, 3.4 and 3.5. Since amplitude effects cannot occur in the phase
model, we set the coupling strength to κ = 0.25, to accelerate possible synchroniza-
tion transitions and to better identify transient dynamics. Moreover, we increased the
network size for full and small-world network connectivity to N = 200 to reduce
finite-size effects. The phase dynamics were simulated for T = 10000s with a time
step dt = 0.001s using an Euler-forward scheme. We computed the Kuramoto order
parameter for each time step dt = 0.1s and showed the final phase distribution in a
histogram plot with 31 bins.
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