publications
- A low-dimensional model for networks of adaptive spiking neurons
B. Pietras, P. Clusella, E. Montbrió
submitted. [PDF, arXiv] - Heterogeneous populations of quadratic intagrate-and-fire neurons: on the generality of Lorentzian distributions
B. Pietras, E. Montbrió
submitted. [PDF, arXiv] - Pulse shape and voltage-dependent synchronization in spiking neuron networks
B. Pietras
Neural Computation, 2024. [DOI, PDF, arXiv] - Exact finite-dimensional description for networks of globally coupled spiking neurons
B. Pietras, R. Cestnik, A. Pikovsky
Phys. Rev. E., 2023. [DOI, PDF, arXiv] - Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity
B. Pietras, V. Schmutz, T. Schwalger
PLoS Comput. Biol., 2022. [DOI, PDF, arXiv] - Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling
P. Clusella, B. Pietras, E. Montbrió
Chaos, 2022. [DOI, PDF, arXiv] - Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons
B. Pietras, N. Gallice, T. Schwalger
Editor's Suggestion in: Phys. Rev. E., 2020. [DOI, PDF, arXiv] - An exact firing rate model reveals the differential effects of chemical versus electrical synapses in
spiking networks
B. Pietras, F. Devalle, A. Roxin, A. Daffertshofer, E. Montbrió
Phys. Rev. E., 2019. [DOI, PDF, arXiv] - Network dynamics of coupled oscillators and phase reduction techniques
B. Pietras, A. Daffertshofer
Physics Reports, 2019. [DOI, PDF] - First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions
B. Pietras, N. Deschle, A. Daffertshofer
Phys. Rev. E, 2018. [DOI, PDF, arXiv] - Scale-freeness or partial synchronization in neural mass phase oscillator networks: Pick one of two?
A. Daffertshofer, R. Ton, B. Pietras, M. L. Kringelbach, G. Deco
NeuroImage, 2018. [DOI, PDF] - Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case
B. Pietras, N. Deschle, A. Daffertshofer
Phys. Rev. E, 2016. [DOI, PDF, arXiv] - Ott-Antonsen attractiveness for parameter-dependent oscillatory systems
B. Pietras, A. Daffertshofer
Chaos, 2016. [DOI, PDF, arXiv]
Preprints
Journal activities
2024
2023
2022
2020
2019
2018
2016
in books
Book chapters
- Reduced Phase Models of Oscillatory Neural Networks
B. Pietras, A. Daffertshofer
in: Stefanovska A. and McClintock P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems, Springer, Cham, 2021. [DOI, PDF] - Phase synchronization in neural systems
A. Daffertshofer, B. Pietras
in: Meyers R. (eds) Encyclopedia of Complexity and Systems Science, Springer, Berlin, Heidelberg, 2020. [DOI, PDF]
phd
PhD thesis
Modeling phase synchronization of interacting neuronal populations: From phase reductions to collective behavior of oscillatory neural networks
B. Pietras, 2018
Promotoren: A. Daffertshofer (VU Amsterdam), A. Stefanovska (Lancaster University)
Copromotor: P. V. E. McClintock (Lancaster University)
[LINK]